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Abstract Imitating successful behavior is a natural and frequently applied
approach when facing complex decision problems. In this paper, we design
protocols for distributed latency minimization in atomic congestion games
based on imitation. We propose to study concurrent dynamics that emerge
when each agent samples another agent and possibly imitates this agent’s
strategy if the anticipated latency gain is sufficiently large. Our focus is on
convergence properties.

We show convergence in a monotonic fashion to stable states, in which
none of the agents can improve their latency by imitating others. As our main
result, we show rapid convergence to approximate equilibria, in which only a
small fraction of agents sustains a latency significantly above or below average.
Imitation dynamics behave like an FPTAS, and the convergence time depends
only logarithmically on the number of agents.
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Imitation processes cannot discover unused strategies, and strategies may
become extinct with non-zero probability. For singleton games we show that
the probability of this event occurring is negligible. Additionally, we prove that
the social cost of a stable state reached by our dynamics is not much worse
than an optimal state in singleton games with linear latency functions.

We concentrate on the case of symmetric network congestion games, but
our results do not use the network structure and continue to hold accordingly
for general symmetric games. They even apply to asymmetric games when
agents sample within the set of agents with the same strategy space.

Finally, we discuss how the protocol can be extended such that, in the long
run, dynamics converge to a pure Nash equilibrium.

1 Introduction

We study imitation dynamics that emerge if myopic agents concurrently im-
itate each other in order to improve on their own situation. In scenarios for
which agents have little or no experience upon which they can base their de-
cisions, or in which precise knowledge about the available options and their
consequences is absent, it is a good strategy to imitate successful behavior.
Thus, it is not surprising that such behavior can frequently be observed, and
has been studied intensively in economics and game theory [25,34].

In this paper we use the imitation paradigm to design protocols and study
dynamics in the context of symmetric congestion games [30]. As an example
of such a game consider a network congestion game in which agents strive to
allocate paths with minimum latency between the same source-sink pair in a
network. The latency of a path equals the sum of the latencies of the edges in
that path and the latency of an edge depends on the number of agents sharing
it.

Our main focus is the design and analysis of a simple imitation protocol,
which can be used by agents in decentralized scenarios for latency minimiza-
tion. Using the protocol agents strive to improve their individual latencies
over time by imitating others in a concurrent and round-based fashion. Our
Imitation Protocol has several appealing properties: it is simple, state-
less, based on local information, and is compatible with the selfish incentives
of the agents. Thus, it is a well-suited tool for implementing load-balacing
and latency minimization in distributed systems with decentralized control
and non-cooperative agents, such as e.g. in the channel allocation process in
wireless networks.

The Imitation Protocol consists of a sampling and a migration step.
First, each agent samples another agent uniformly at random. Then he con-
siders the latency gain that he would have by adopting the strategy of the
sampled agent, under the assumption that no-one else changes his strategy. If
this latency gain is not too small our agent adopts the sampled strategy with
a migration probability mainly depending on the anticipated latency gain. The
major technical challenge in designing such a concurrent protocol is to avoid
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overshooting effects. Overshooting occurs if too many agents sample other
agents currently using the same strategy, and if all of them migrate towards
it. In this case their latency might be greater than before the migration. In
order to avoid overshooting, the migration probabilities have to be defined ap-
propriately without sacrificing the benefit of concurrency. We propose to scale
the migration probabilities by the elasticity of the latency functions in order
to avoid overshooting. The elasticity of a function at point x describes the pro-
portional growth of the function value as a result of a proportional growth of
its argument. Note that in case of polynomial latency functions with positive
coefficients and maximum degree d the elasticity is upper bounded by d.

A natural solution concept in this scenario is imitation-stability. A state is
imitation-stable if no more improvements are possible based on the Imitation
Protocol. We analyse convergence properties with respect to this solution
concept.

1.1 Our Results

As our first result we prove that the Imitation Protocol succeeds in avoid-
ing overshooting effects and converges in a monotonic fashion (Section 3).
More precisely, we show that a well-known potential function (Rosenthal [30])
decreases on expectation as long as the system is not yet at an imitation-stable
state. Thus, the potential is a super-martingale and eventually reaches a local
minimum, corresponding to an imitation-stable state. Hence, as a corollary,
we see that an imitation-stable state is reached in pseudopolynomial time.

Our main result, presented in Section 3.3, however, is a much stronger
bound on the time to reach approximate imitation-stable states. What is a
natural definition of approximately stable states in our setting? By repeatedly
sampling other agents, an agent gets to know the average latency of the system.
It is approximately satisfied, if it does not sustain a latency much larger than
the average. Hence, we say that a state is approximately stable if almost all
agents are almost satisfied. More precisely, we consider states in which at most
a δ-fraction of the agents deviates by more that an ǫ-fraction (in any direction)
from the average latency. We show that the expected time to reach such a state
is polynomial in the inverse of the approximation parameters δ and ǫ as well as
in the maximum elasticity of the latency functions, and logarithmic in the ratio
between maximum and minimum potential. Hence, if the maximum latency
of a path is fixed, the time is only logarithmic in the number of agents and
independent of the size of the strategy space and the number of resources.

We complement these results by various lower bounds. First, it is clear
that pseudopolynomial time is required to reach exact imitation-stable states.
This follows from the fact that there exist states in which all latency improve-
ments are arbitrarily small, resulting in arbitrarily small migration probabil-
ities. Hence, already a single step may take pseudopolynomially long. As a
concept of approximate stable states one could have required all agents to be
approximately satisfied, rather than only all but a δ-fraction. This, however,
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would require to wait a polynomial number of rounds for the last agent to
become approximately satisfied, as opposed to our logarithmic bound.

In addition, we will consider sequential imitation processes in which only
one agent may move at a time. In Section 3.2 we extend a construction from [2]
to show that there exist instances in which the shortest sequence of imitations
that leads to an imitation-stable state is exponentially long.

The Imitation Protocol has one drawback: It is not innovative in the
following sense. It might happen with small but non-zero probability that all
agents currently using the same strategy P migrate towards other strategies
and no other agent migrates towards P . In this case, the knowledge about the
existence of strategy P is lost and cannot be regained. For singleton games,
i. e., games in which each strategy is a singleton set, in which empty links have
latency zero, we show in Section 4 that the probability of this event occurring in
a polynomial number of rounds is negligible. An important consequence of this
result is that the cost of a state to which the Imitation Protocol converges
is, on expectation, not much worse than the cost of a Nash equilibrium. More
precisely, for the case of linear latency functions the expected cost of a state
to which the Imitation Protocol converges is within a constant factor of
the optimal solution. While we conjecture that this results holds in general
for singleton games, we are able to prove it here only for games, in which the
optimum solution has a significant number of agents on every link.

Alternatively, in cases, in which convergence to a Nash equilibrium is re-
quired, we can adjust the dynamics and occasionally let agents use a suitably
defined Exploration Protocol. Using such a protocol, agents sample other
strategies directly instead of sampling them by looking at other agents. In
Section 5 we show that a suitable definition of such a protocol and a suitable
combination with the Imitation Protocol guarantee convergence to Nash
equilibria in the long run.

To the best of our knowledge, this is the first work that considers concurrent
protocols for atomic congestion games that are not restricted to parallel links
or linear latency functions. Results similar to the ones presented here have
been obtained for the non-atomic Wardrop model in [19] where the analysis is
significantly simplified by the fact that probabilistic effects do not have to be
taken into account.

1.2 Related Work

Rosenthal [30] proves that every congestion game possesses a Nash equilib-
rium, and that better-response dynamics converge to Nash equilibria. In these
dynamics agents have complete knowledge, and, in every round, only a single
agent deviates to a better strategy than it currently uses. Fabrikant et al. [14],
however, observe that, in general, from an appropriately chosen initial state
it takes exponentially many steps until agents finally reach an equilibrium.
This negative result still holds in games with ǫ-greedy agents, i. e., in games
in which agents only deviate if their latency decreases by a relative factor of
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at least 1 + ǫ [2,10,32]. Moreover, Fabrikant et al. [14] prove that, in gen-
eral, computing a Nash equilibrium is PLS-complete. Their result still holds in
the case of asymmetric network congestion games. In addition, Skopalik and
Vöcking [32] prove that even computing an approximate Nash equilibrium is
PLS-complete. On the positive side, best response dynamics converge quickly
in singleton and matroid congestion games [2,26]. Additionally, Chien and
Sinclair [10] consider the convergence time of best-response dynamics to ap-
proximate Nash equilibria in symmetric games. They prove fast convergence to
approximate Nash equilibria provided that the latency of a resource increases
by at most a factor for each additional user. Finally, Goldberg [23] considers a
protocol applied to a scenario where n weighted users assign load to m parallel
links and the latency equals the load of a resource. In this protocol, randomly
selected agents move sequentially, and migrate to a randomly selected resource
if this improves their latency. The expected time to reach a Nash equilibrium is
pseudopolynomial. Results considering other protocols and links with latency
functions are presented in [12].

The social cost of (approximate) Nash equilibria in congestion games has
been subject to numerous studies. The most prominent concept has been the
price of anarchy [29], which is the ratio of the worst cost of any Nash equi-
librium over the cost of an optimal assignment. For atomic games and linear
latencies, Awerbuch et al. [4] and Christodoulou and Koutsoupias [11] show
a tight bound of 2.5, which was later translated into a unified argument for
more general equilibrium concepts by Roughgarden [31]. The special case of
(weighted) singleton games has been of particularly strong interest, and we
refer the reader to [33] for an introduction to the numerous results. In terms
of dynamics, Awerbuch et al. [5] consider the number of best-response steps
required to reach a desirable state, which has a social cost only a constant
factor larger than that of a social optimum. They show that even in conges-
tion games with linear latencies there exist exponentially long best-response
sequences for reaching such a desirable state. In contrast, Fanelli et al. [15]
show that for linear latency functions not all such sequences are exponentially
long. They describe a particular class of best response sequences that reach a
desirable state after at most Θ(n log logn) steps. For more results on weighted
congestion games or sequences with player movement patterns see, e.g., [16,
17].

Recently, concurrent protocols have been studied in various models and
under various assumptions. Even-Dar and Mansour [13] consider concurrent
protocols in a setting where the links have speeds. However, their protocols
require global knowledge in the sense that the users must be able to deter-
mine the set of underloaded and overloaded links. Given this knowledge, the
convergence time is doubly logarithmic in the number of agents. In [6] the au-
thors consider a distributed protocol for the case that the latency equals the
load that does not rely on this knowledge. Their bounds on the convergence
time are also doubly logarithmic in the number of agents but polynomial in
the number of links. In [7] the results are generalized to the case of weighted
jobs. In this case, the convergence time is only pseudopolynomial, i. e., poly-
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nomial in the number of users, links, and in the maximum weight. As another
generalization, Berenbrink et al. [8] generalize the scenario to load balancing
over networks, in which agents are weighted jobs moving from machine to
machine via an underlying graph. The convergence times here are logarithmic
in the number of agents and polynomial in the number of machines and the
maximum machine speed or maximum weight. For some improved bounds and
further extensions of this scenario see [3].

Fotakis et al. [21] consider a scenario with latency functions for every re-
source. Their protocol involves local coordination among the agents sharing a
resource. For the family of games in which the number of agents asymptotically
equals the number of resources they prove fast convergence to almost Nash
equilibria. Intuitively, an almost Nash equilibrium is a state in which there are
not too many too expensive and too cheap resources. In [18,1], a load balanc-
ing scenario is considered in which no information about the target resource
is available. The authors present efficient protocols in which the migration
probability depends purely on the cost of the currently selected strategy.

Finally, Kleinberg et al. have analyzed the performance of multiplicative-
weights algorithms for no-regret learning in load balancing [28] and congestion
games [27]. However, these dynamics usually only converge in the history of
play and only to a stable distribution over states, such as mixed Nash or
correlated equilibria.

Most of these protocols involve direct sampling of resources or machines
instead of imitation of agents. While this is unavoidable for reaching Nash equi-
libria (and we also incorporate this with our exploration protocol), it severely
limits the convergence speed for large and complex strategy spaces, as finding
cheap strategies can already be a non-trivial task. Instead, our main insight in
this paper is that the imitation process allows to propagate good known strate-
gies much more quickly. For example, while the protocol in [21] is similar to
ours in terms of potential function and migration probabilities, the authors
assume (1) parallel links and (2) a local coordination that restricts the num-
ber of migrating agents to at most one per link. This avoids problems with
large strategy spaces and also allows to simplify the analysis. By sampling
machines, the protocol yields a convergence time depending on the slope of
the latency functions. Instead, our imitation process allows to use the relate
the convergence time to the elasticity, which can be significantly smaller than
the slope.

In this sense, our work is close to [19], where the authors consider conges-
tion games in the non-atomic Wardrop model with an infinite population of
agents carrying an infinitesimal amount of load each. They consider a proto-
col similar to ours and prove that with respect to approximate equilibria it
behaves like an FPTAS, i. e., it reaches an approximate equilibrium in time
polynomial in the approximation parameters and the representation length of
the instance. In contrast to our work the analysis of the continuous model does
not have to take into account probabilistic effects.
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Our protocol is based on the notion of imitation, a concept frequently ap-
plied in evolutionary game theory. For an introduction to imitation dynamics,
see, e g., [25,34].

2 Congestion Games and Imitation Dynamics

In this section, we provide a formal description of our model. We define con-
gestion games in terms of networks, that is, the strategy space of each agent
corresponds to the set of paths connecting a particular source-sink pair in a
network. We use this terminology only for convenience, and our main results
presented in subsequent chapters are independent of the relation to networks.
They continue to hold for general symmetric congestion games, in which strat-
egy spaces of agents might not be efficiently searchable. Furthermore, we in-
troduce the slope and the elasticity of latency functions, and give a precise
definition of the Imitation Protocol.

2.1 Symmetric (Network) Congestion Games

A symmetric network congestion game is given by a tuple (G, (s, t),N , (ℓe)e∈E),
where G = (V,E) denotes a network with vertices V and m directed edges E,
and s ∈ V and t ∈ V denote a source and a sink vertex. N denotes the set of
n agents. For measuring the delay or cost caused by usage there is (ℓe)e∈E , a
family of non-decreasing and differentiable latency functions ℓe : R≥0 → R≥0.
We assume that for all e ∈ E, the latency functions satisfy ℓe(x) > 0 for all
x > 0. The strategy space of all agents equals the set of paths P connecting
the source s with the sink t. If G consists of two nodes s and t only, which are
connected by a set of parallel links, then we call the game a singleton game.
Let p denote the number of paths, i. e., p = |P|. A state x of the game is a
vector (xP )P∈P where xP denotes the number of agents utilizing path P in
state x, and xe =

∑

P∋e xP is the congestion of edge e ∈ E in state x. The
latency of edge e in state x is given by ℓe(xe), and the latency of path P ∈ P
is ℓP (x) =

∑

e∈P ℓe(xe). The latency of an agent is the latency of the path it
chooses.

For brevity, for all P ∈ P , let 1P denote the p-dimensional unit vector
with the one in position P . In state x an agent has an incentive to switch from
path P to path Q if this would strictly decrease its latency, i. e., if ℓP (x) >
ℓQ(x+ 1Q − 1P ).

If no agent has an incentive to change its strategy, then x is at a (pure) Nash
equilibrium.1 It is well known [30], that the set of Nash equilibria corresponds
to the set of states that minimize the potential function

Φ(x) =
∑

e∈E

xe
∑

i=1

ℓe(i) .

1 We will restrict our attention to pure Nash equilibria throughout the paper.
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In the following, let Φ∗ = minx Φ(x) be the minimum potential. Note that due
to our definition of the latency functions Φ∗ > 0. For every path P ∈ P let

ℓ+P (x) = ℓP (x+ 1P ) .

Note that for every path Q ∈ P

ℓ+P (x) ≥ ℓP (x+ 1P − 1Q) .

Additionally, let

Lav(x) =
∑

P∈P

xP

n
ℓP (x)

denote the average latency of the paths in state x, and let

L+
av(x) =

∑

P∈P

xP

n
ℓP (x+ 1P ) .

Finally, let ℓmax = maxx maxP∈P ℓP (x) denote the maximum latency of any
path. Throughout this paper, whenever we consider a fixed state x we simply
drop the argument (x) from Φ, ℓP , ℓ

+
P , Lav, and L+

av.

2.2 Elasticity and Slope

To bound the steepness of the latency functions and the effect that overshoot-
ing may have, we consider the elasticity of the latency functions. Let d denote
an upper bound on the elasticity of the latency functions, i. e.,

d ≥ max
e∈E

sup
x∈(0,n]

{

ℓ′e(x) · x

ℓe(x)

}

.

Now given a latency function with elasticity d, it holds that for any x and
α ≥ 1, ℓe(αx) ≤ ℓe(x) · αd and for 0 ≤ α < 1, ℓe(αx) ≥ ℓe(x) · αd. As an
example, the function a xd has elasticity d.

For almost empty resources, we will also need an upper bound on the slope
of the latency functions. Let νe denote the maximum slope on almost empty
edges, i. e., we define

νe = max
x∈{1,...,d}

{ℓe(x)− ℓe(x− 1)} .

Finally, for P ∈ P , let νP =
∑

e∈P νe and choose ν such that ν ≥ maxP∈P νP .
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2.3 The Imitation Protocol

Our Imitation Protocol (Protocol 1) proceeds in two steps. First, an agent
samples another agent uniformly at random. The agent then migrates with a
certain probability from its old path P to the sampled pathQ depending on the
anticipated relative latency gain and on the elasticity of the latency functions.
Our analysis concentrates on dynamics that result from the protocol being
executed by the agents in parallel in a round-based fashion. These dynamics
generate a sequence of states x(0), x(1), . . .. The resulting dynamics converge
to a state that is stable in the sense that imitation cannot produce further
progress, i. e., x(t + 1) = x(t) with probability 1. Such a state is called an
imitation-stable state. In other words, a state is imitation-stable if it is ǫ-Nash
with ǫ = ν with respect to the strategy space restricted to the current support.
Here, ǫ-Nash means that no agent can improve its own payoff unilaterally by
more than ǫ.

Protocol 1 Imitation Protocol, repeatedly executed by all agents.
Let P denote the path of the agent in state x.
Sample another agent uniformly at random. Let Q denote its path.
if ℓP − ℓQ(x+ 1Q − 1P ) > ν then

with probability

µPQ =
λ

d
·
ℓP (x) − ℓQ(x+ 1Q − 1P )

ℓP (x)

migrate from path P to path Q.
end if

As discussed in the introduction, the main difficulty in the design of the
protocol is to bound overshooting effects. To get an intuition of this problem,
consider two parallel links of which the first has the constant latency function
ℓ1(x) = c and the second has the latency function ℓ2(x) = xd. Recall that
the elasticity of ℓ2 is d. Furthermore, assume that only a small number of
agents x2 utilize link 2 whereas the majority of n − x2 agents utilize link 1.
Let b = c − xd

2 > 0 denote the latency difference between the two links. A
simple calculation shows that using the protocol without the damping factor
1/d, the expected latency increase on link 2 would be Ω(b · d), overshooting
the balanced state by a factor d. For this reason, we reduce the migration
probability accordingly. The constant λ will be determined later.

Note that the arguments in the last paragraph hold for the expected load
changes. Our protocol, however, has to take care of probabilistic effects, i. e.,
the realized migration vector may differ from its expectation. Typically, we
can use the elasticity to bound the impact of this effect. However, if the con-
gestion on an edge is very small, i. e., less than d, then the number of joining
agents is not concentrated sharply enough around its expectation. In order
to compensate for this, we add an additional requirement that agents only
migrate if the anticipated latency gain is at least ν and use this to bound
probabilistic effects if the congestion of the edge is less than d. Let us remark
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that we will see below (Theorem 4) that for a large class of singleton games it
is very unlikely, that an edge will ever have a load of d or less, so the protocol
will behave in the same way with high probability for a polynomial number of
rounds even if this additional requirement is dropped.

3 General Strategy Spaces

In this section, we consider imitation dynamics that emerge if in each round
agents concurrently apply the Imitation Protocol. At first, we observe that
imitation dynamics converge to imitation stable states since in each round the
potential Φ(x) decreases in expectation. From this result we derive a pseu-
dopolynomial upper bound on the convergence time to imitation-stable states.

3.1 Convergence to Imitation-Stable States

Consider two states x and x′ as well as a migration vector ∆x = (∆xP )P∈P

such that x′ = x+∆x. We may imagine ∆x as the result of one round of the
Imitation Protocol although the following lemma is independent of how
∆x is constructed. Furthermore, we consider ∆x to be composed of a set of
migrations of agents between pairs of paths. We use xPQ to denote the number
of agents who switch from path P to path Q. Then, ∆xP denotes the total
increase or decrease of the number of agents utilizing path P , that is,

∆xP =
∑

Q∈P

(xQP − xPQ) .

Also, let ∆xe =
∑

P∋e∆xP denote the induced change of the number of
agents utilizing edge e ∈ E. In order to prove convergence, we define the
virtual potential gain

VPQ(x,∆x) = xPQ · (ℓQ(x+ 1Q − 1P )− ℓP (x))

which is the sum of the potential gains each agent migrating from path P to
path Q would contribute to ∆Φ if each of them was the only migrating agent.
Note that if an agent improves the latency of his path, the potential gain is
negative. The sum of all virtual potential gains is a very rough lower bound on
the true potential gain ∆Φ(x,∆x) = Φ(x+∆x)−Φ(x). In order to compensate
for the fact that agents concurrently change their strategies, consider the error
term on an edge e ∈ E:

Fe(x,∆x) =































xe+∆xe
∑

u=xe+1

ℓe(u)− ℓe(xe + 1) if ∆xe > 0

xe
∑

u=xe+∆xe+1

ℓe(xe)− ℓe(u) if ∆xe < 0

0 if ∆xe = 0
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Subsequently, we show that the sum of the virtual potential gains and the
error terms is indeed an upper bound on the true potential gain ∆Φ(x,∆x).
A similar result is shown in [20] for a continuous model.

Lemma 1 For any assignment x and migration vector ∆x it holds that

∆Φ(x,∆x) ≤
∑

P,Q∈P

VPQ(x,∆x) +
∑

e∈E

Fe(x,∆x) .

Proof We first express the virtual potential gain in terms of latencies on the
edges. Clearly,

∑

P,Q∈P

VPQ(x,∆x) =
∑

P,Q∈P

xPQ · (ℓQ(x+ 1Q − 1P )− ℓP (x))

=
∑

P,Q∈P

xPQ ·





∑

e∈Q\P

ℓe(xe + 1)−
∑

e∈P\Q

ℓe(xe)





≥
∑

e:∆xe>0

∆xe · ℓe(xe + 1) +
∑

e:∆xe<0

∆xe · ℓe(xe) . (1)

The true potential gain, however, is

∆Φ(x,∆x) =
∑

e:∆xe>0

xe+∆xe
∑

u=xe+1

ℓe(u)−
∑

e:∆xe<0

xe
∑

u=xe+∆xe+1

ℓe(u)

=
∑

e:∆xe>0

(

∆xe · ℓe(xe + 1) +

xe+∆xe
∑

u=xe+1

(ℓe(u)− ℓe(xe + 1))

)

+
∑

e:∆xe<0

(

∆xe · ℓe(xe) +

xe
∑

u=xe+∆xe+1

(ℓe(xe)− ℓe(u))

)

.

Substituting Equation (1) for the left term of each sum and the definition of
Fe for the right term of each sum, we obtain the claim of the lemma.

In the following, we consider ∆x to be a migration vector generated by
the Imitation Protocol rather than an arbitrary vector. In this case, we
denote ∆X as a random variable and all probabilities and expectations are
taken with respect to the Imitation Protocol. In order to prove that the
potential decreases in expectation, we derive a bound on the size of the error
terms. We show that the error terms alter the virtual potential gain by at most
a factor of two. Put another way, we show that in expectation the absolute
value of the true potential gain is at least half of the absolute value of the
virtual potential gain.

Lemma 2 Let x denote a state and let ∆X denote a random migration vector
generated by the Imitation Protocol. Then,

E [∆Φ(x,∆X)] ≤
1

2

∑

P,Q∈P

E [VPQ(x,∆X)] .
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where the expectation is taken over the randomness of the Imitation Proto-

col.

Proof For any given round, each term in VPQ, P,Q ∈ P and Fe, e ∈ E can
be associated with an agent. Fix an agent i migrating from, say, P to Q. Its
contribution to the VPQ(x,∆X) is −∆ℓPQ(x) = ℓQ(x+1Q−1P )−ℓP (x) (this
is the same for all agents moving from P to Q). It may also contribute to Fe,
e ∈ P ∪Q. The general idea of the proof is to split and allocate VPQ(x,∆X)
and

∑

e Fe(x,∆X) in a suitable manner to migrating agents that shows that
the total error reduces the absolute value of the total virtual potential gain by
no more than a half.

While agent i contributes −∆ℓPQ to VPQ(x,∆X), bounding its contri-
bution to

∑

e Fe(x,∆X) to at most ∆ℓPQ/2 is non-trivial. The contribution
depends on ∆Xe and whether i migrates towards or away from e. Deriving
suitable upper and lower bounds on these contributions depending on whether
i migrates towards e or away from e is the central technical challenge in the
proof.

For characterizing the error contribution we consider subsetsN ′ ⊂ N of the
agents and assume that they are ordered with respect to ascending migration
probabilities µPjQj

, in which Pj and Qj denote the origin and destination
path of agent j ∈ N ′. Ties are broken arbitrarily. Note that all such orderings
can be derived solely using the state x that yields the values µPjQj

. They are
independent of the random choices made by the agents.

Recall that we fixed an agent i that migrates from P to Q and strive
to determine its expected contribution to the error term. Now fix an edge
e ∈ Q \ P . We let A+(e) denote the random set of agents migrating to e ∈
Q \ P . Let ∆X̃e denote the random number of agents in A+(e) which occur
in our ordering with respect to µPQ before agent i. Agent i’s contribution to

Fe(x,∆X), e ∈ Q \ P , is upper bounded by ∆ℓ̃e(∆X̃e) where we define the
error function ∆ℓ̃e(δ) = ℓe(xe+1+δ)−ℓe(xe+1). In this case, we forgot about
the positive effects agents departing from e might have. For an illustration,
see Figure 1. For brevity, let us write ℓe = ℓe(xe) and ℓ+e = ℓe(xe + 1) as well
as ℓP = ℓP (x) and ℓ+Q = ℓQ(xe + 1Q − 1P ). For e ∈ Q \ P we show that

E

[

∆ℓ̃e

(

∆X̃e

)]

≤
1

8
· (ℓP − ℓ+Q) ·

(

ℓ+e
ℓ+Q

+
νe
νQ

)

. (2)

Now fix an edge e ∈ P \ Q. Let A−(e) denote the random set of agents
migrating away from e ∈ P \Q. Let ∆X̃e denote the random number of agents
in A−(e) which occur in our ordering with respect to µPQ before agent i. Agent

i’s contribution to Fe(x,∆X), e ∈ P \Q is lower bounded by ∆ℓ̃e(∆X̃e) where
∆ℓ̃e(δ) is defined as above. Hence, we forgot about the positive effects agents
migrating towards e might have. For e ∈ P \Q we show that

E

[

∆ℓ̃e

(

∆X̃e

)]

≤
1

8
· (ℓP − ℓ+Q) ·

(

ℓe
ℓP

+
νe
νP

)

. (3)
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ℓe(x)

x
∆X̃e

xe

ℓe′ (x)

x
Fig. 1 Potential gain of an agent migrating from edge e′ towards edge e. The hatched area
is the agent’s virtual potential gain. The shaded area on the left is this agents contribution
to the error term, caused by the ∆X̃e agents ranking before the agent under consideration
(with respect to µPQ).

Thus, the expected sum of the error terms of an agent migrating from P to Q
is at most

ℓP − ℓ+Q
8





∑

e∈P\Q

(

ℓe
ℓP

+
νe
νP

)

+





∑

e∈Q\P

ℓ+e
ℓ+Q

+
νe
νQ







 ≤
1

2
(ℓP − ℓ+Q) ,

i. e., half of its virtual potential gain, which proves the lemma. We now proceed
to prove Inequality (2). The case of Inequality (3) is very similar.

Consider e ∈ Q \ P where Q denotes the destination path of agent i. For
brevity, let us write IPQ = (ℓP − ℓ+Q)/ℓP for the incentive to migrate from P
to Q. Then, due to our ordering of the agents,

E

[

∆X̃e

]

≤ n ·
xe

n
· µPQ ≤

λ · xe · IPQ

d
, (4)

implying

xe ≥
E

[

∆X̃e

]

· d

λ · IPQ
. (5)
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Furthermore, due to the elasticity of ℓe, and using (1 + 1/x)x ≤ exp(1), we
obtain

∆ℓ̃e(δ) ≤ ℓ+e ·

(

xe + 1 + δ

xe + 1

)d

− ℓ+e

≤ ℓ+e ·

(

1 +
δ

xe

)d

− ℓ+e

≤ ℓ+e ·
(

e
d δ
xe − 1

)

. (6)

Subsequently, we consider two cases.

Case 1: E
[

∆X̃e

]

≥ 1
64 . Substituting Inequality (5) into Inequality (6), we ob-

tain for every κ ∈ R≥0

∆ℓ̃e

(

κE
[

∆X̃e

])

≤ ℓ+e ·
(

eκλ IPQ − 1
)

.

Now, note that for every k ∈ N and κ ∈ [k, k + 1]

P

[

∆X̃e ≥ κE
[

∆X̃e

]]

≤ P

[

∆X̃e ≥ kE
[

∆X̃e

]]

and

∆ℓ̃e(κE
[

∆X̃e

]

) ≤ ∆ℓ̃e((k + 1)E
[

∆X̃e

]

)

hold. Applying a Chernoff bound (Fact 7 in the appendix), we obtain an

upper bound for the expectation of E
[

∆ℓ̃e

(

∆X̃e

)]

as follows.

E

[

∆ℓ̃e

(

∆X̃e

)]

≤
∞
∑

k=1

P

[

∆X̃e ≥ k E
[

∆X̃e

]]

·∆ℓ̃e((k + 1)E
[

∆X̃e

]

)

≤ ∆ℓ̃e

(

5E
[

∆X̃e

])

+

∞
∑

k=5

P

[

∆X̃e ≥ k E
[

∆X̃e

]]

·∆ℓ̃e((k + 1)E
[

∆X̃e

]

)

≤ ℓ+e ·
(

e5 λ IPQ − 1
)

+
∞
∑

k=5

e−
1
4 E[∆X̃e] k ln k · ℓ+e ·

(

e(k+1) λ IPQ − 1
)

≤ ℓ+e ·
(

e5 λ IPQ − 1
)

+

∞
∑

k=5

e−
1
4 E[∆X̃e] k · ℓ+e ·

(

e2 k λ IPQ − 1
)

≤ ℓ+e ·
(

e5 λ IPQ − 1
)

+ ℓ+e ·
∞
∑

k=5

ek(2 λ IPQ− 1
4 E[∆X̃e])

≤ ℓ+e ·
(

e5 λ IPQ − 1
)

+ ℓ+e ·

∫ ∞

4

eu(2 λ IPQ− 1
4 E[∆X̃e])du

= ℓ+e ·



e5λIPQ − 1 + e−E[∆X̃e] e8λ IPQ

1
4E

[

∆X̃e

]

− 2λ IPQ



 .
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where the last inequality is true for λ < 1/512, because due to our as-

sumption that E
[

∆X̃e

]

≥ 1/64 the sum term is monotonically decreasing.

Now, due to Fact 8 (with r = 1, see appendix) and our assumption that

E

[

∆X̃e

]

≥ 1/64, we obtain

E

[

∆ℓ̃e

(

∆X̃e

)]

≤ λ · ℓ+e · IPQ ·

(

5 (e− 1) +
8 (e− 1)
1

4·64 − 2λ

)

≤ c · λ · ℓ+e ·
ℓP − ℓ+Q

ℓP

≤ c · λ · ℓ+e ·
ℓP − ℓ+Q

ℓ+Q

for some constant c. The first inequality holds for λ < 1/512, proving
Equation (2) if λ is chosen small enough.

Case 2: E
[

∆X̃e

]

< 1
64 . Again, in this case we can apply a Chernoff bound

(Fact 7 in the appendix) to upper bound E

[

∆ℓ̃e

(

∆X̃e

)]

.

E

[

∆ℓ̃e

(

∆X̃e

)]

≤
n
∑

k=1

P

[

∆X̃e = k
]

·∆ℓ̃e(k)

≤
n
∑

k=1

P



∆X̃e ≥
k

E

[

∆X̃e

] E

[

∆X̃e

]



 ·∆ℓ̃e(k)

≤
n
∑

k=1

e−k (ln(k/E[∆X̃e])−1) ·∆ℓ̃e(k)

There are two sub-cases:
Case 2a: xe > d. In order to bound the expected latency increase, we apply

the elasticity bound on ℓe:

E

[

∆ℓ̃e(∆X̃e)
]

≤
n
∑

k=1

e−k (ln(k/E[∆X̃e])−1) · ℓ+e ·
(

e
k d
xe − 1

)

≤ ℓ+e ·
n
∑

k=1

e−k (ln(k)−ln(E[∆X̃e])−1) ·
(

e
k d
xe − 1

)

≤ ℓ+e ·
n
∑

k=1

(

E

[

∆X̃e

]

(ek E
[

∆X̃e

]k−1

)

)

e−k (lnk) ·
(

e
k d
xe − 1

)

≤ ℓ+e · E
[

∆X̃e

]

·
n
∑

k=1

e−k (ln k) ·
(

e
k d
xe − 1

)

.
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Now, splitting up the sum, we define

L1 = E

[

∆X̃e

]

⌊ 8 xe
d ⌋
∑

k=1

e−k (ln k) ·
(

e
k d
xe − 1

)

≤ E

[

∆X̃e

] (e8 − 1) d

8 xe

⌊ 8xe
d ⌋
∑

k=1

e−k (lnk) · k

≤
e8

4
· E
[

∆X̃e

] d

xe

≤
e8

4
· λ IPQ ,

where the first inequality uses the observation that e
k d
xe ≤ e8 since

k ≤ ⌊8xe/d⌋, and Fact 8 in the appendix (with r = 8). Additionally,
the second inequality uses the observation that

∑∞
k=1 e

−k (ln k) · k ≤
2 (see Fact 9 in the appendix), and finally the last inequality uses
Inequality (4).
For the second part of the sum, let

L2 = E

[

∆X̃e

]

∞
∑

k=⌈ 8 xe
d ⌉

e−k (ln k) ·
(

e
k d
xe − 1

)

≤ E

[

∆X̃e

]

∞
∑

k=⌈ 8 xe
d ⌉

e−k (ln k)+ k d
xe

≤ E

[

∆X̃e

]

∞
∑

k=⌈ 8 xe
d ⌉

e−k (ln k−1) (since xe > d)

≤ E

[

∆X̃e

]

∞
∑

k=⌈ 8 xe
d ⌉

e−
1
2 k ln k (since k ≥

⌈

8xe

d

⌉

≥ 8)

≤ E

[

∆X̃e

]

∞
∑

k=⌈ 8 xe
d ⌉

(

d

8 xe

)
1
2k

.

Due to Fact 11 in the appendix and since xe > d

L2 ≤ E

[

∆X̃e

]

(

d
8xe

)
8
2

1−
√

d
8xe

≤ E

[

∆X̃e

] d

xe

≤ λ IPQ .
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Reassembling the sum, we obtain

E

[

∆ℓ̃e(∆X̃e)
]

≤ ℓ+e · (L1 + L2)

≤ ℓ+e ·

(

e8

4
+ 1

)

λ IPQ .

Again, by the same arguments as at the end of Case 1 this proves
Equation (2) if λ is less than 1/(2e8 + 8).

Case 2b: xe ≤ d. In this case we separate the upper bound on E

[

∆ℓ̃e(∆X̃e)
]

into the section up to d and above d. For the first section we use the fact
that each additional agent on resource e causes a latency increase of at
most νe as long as the load is at most d. We define the contribution
to the expected latency increase by the events that up to d − xe join
resource e, i. e., afterwards the congestion is still at most d. In this case,
we may use νe to bound the contribution of each agent:

L1 ≤
d−xe
∑

k=1

e
−k

(

ln

(

k

E[∆X̃e]

)

−1

)

· k νe

≤ e νe E
[

∆X̃e

]

+ νe E
[

∆X̃e

]2 d−xe
∑

k=2

e−k (ln(k)−1) · k

≤ e νe E
[

∆X̃e

]

·



1 +
8E
[

∆X̃e

]

e





≤ 3 νe E
[

∆X̃e

]

,

where the third inequality holds since
∑d−xe

k=2 e−k (ln(k)−1) · k ≤ 8 (see
Fact 10 in the appendix), and where the last inequality holds since

E

[

∆X̃e

]

< 1/64.

For the contribution of the agents increasing the load on resource e to
above d we use the elasticity constraint again. This time, we do not
consider the latency increase with respect to ℓ+e (xe) but with respect
to ℓe(d):

L2 =

n
∑

k=d−xe+1

e
−k·

(

ln

(

k

E[∆X̃e]

)

−1

)

· ℓe(d) ·
(

e
d (k−(d−xe))

d − 1
)

.
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As in case (2a),

L2 ≤ ℓe(d) · E
[

∆X̃e

]

·
∞
∑

k=d−xe+1

e−k ln k+k−(d−xe)

= ℓe(d) · E
[

∆X̃e

]

·
∞
∑

k=1

e−(k+(d−xe)) ln(k+(d−xe))+k

= ℓe(d) · E
[

∆X̃e

]

· e−(d−xe) ·
∞
∑

k=1

e−(k+(d−xe)) ln(k+(d−xe))+k+d−xe .

Consider the series in the above expression as a function of u = (d−xe)
and denote it by S(u). Note that S(u) converges for every u ≥ 0 and
S(u) → 0 as u → ∞. In particular, S(u) =

∑∞
k=1(e/(k + u))k+u is

monotonically decreasing in u, as for k ≥ 1 each summand is monoton-
ically decreasing in u. For u = 0, the series is upper bounded by the
one in Fact 10 (see the appendix), and thus S(u) ≤ 8 for any u ≥ 0.
Therefore,

L2 ≤ 8 ℓe(d) · E
[

∆X̃e

]

· e−(d−xe)

≤ 8 (ℓe(xe) + (d− xe) νe) · E
[

∆X̃e

]

· e−(d−xe) .

Since (d− xe) · e−(d−xe) < 1/2,

L2 ≤ 4 (ℓe(xe) + νe) · E
[

∆X̃e

]

.

Altogether,

E

[

∆ℓ̃e(∆X̃e)
]

≤ L1 + L2

≤ 7 νe E
[

∆X̃e

]

+ 4 ℓe(xe)E
[

∆X̃e

]

≤ 7 νe E
[

∆X̃e

]

+ 4
λxe IPQ

d
· ℓe(xe)

≤
7

64
ν
νe
νQ

+
4λxe IPQ

d
· ℓe(xe)

where we have used Equation (4) for the third inequality, and the in-

equalities E
[

∆X̃e

]

< 1/64 and ν ≥ νQ for the last step. Since xe ≤ d

and ℓP − ℓ+Q ≥ ν,

E

[

∆ℓ̃e(∆X̃e)
]

≤
1

8
(ℓP − ℓ+Q)

νe
νQ

+
4λ (ℓP − ℓ+Q)

ℓP
· ℓe(xe)

again proving Equation (2) if λ ≤ 1/32.
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Finally, the case e ∈ P is very similar.

Note that all migrating agents add a negative contribution to the virtual
potential gain since they migrate only from paths with currently higher latency
to paths with lower latency. Hence, together with Lemma 2, we can derive the
next corollary.

Corollary 1 Consider a symmetric network congestion game Γ and let x and
X ′ denote states of Γ such that X ′ is a random state generated after one round
of executing the Imitation Protocol. Then, E [Φ(X ′)] ≤ Φ(x) with strict
inequality as long as x is not imitation-stable. Thus, Φ is a super-martingale.

It is obvious that the sequence of states generated by the Imitation Pro-

tocol terminates at an imitation-stable state. From Lemma 2 we can imme-
diately derive an upper bound on the time to reach such a state. However,
since for arbitrary latency functions the minimum possible latency gain may
be very small, this bound can clearly be only pseudo-polynomial. To see this,
consider a state in which only one agent can make an improvement. Then, the
expected time until the agent moves is inversely proportional to its latency
gain.

Theorem 1 Consider a symmetric network congestion game in which all
agents use the Imitation Protocol. Let x denote the initial state of the
dynamics. Then the dynamics converge to an imitation-stable state in expected
time

O

(

dn ℓmax Φ(x)

ν2

)

.

Proof By definition of the Imitation Protocol, the expected virtual poten-
tial gain in any state x′ which is not yet imitation-stable is bounded by

E





∑

P,Q∈P

VPQ(x
′, ∆X ′)



 ≤ −ν ·
λ

dn
·

ν

ℓmax
.

Hence, also the expected potential gain E [∆Φ(X ′)] in every intermediate state
x′ of the dynamics is bounded from above by at least half of the above value.
From this, it follows that the expected time until the potential drops from at
most Φ(x) to the minimum potential Φ∗ > 0 is at most

O

(

dn ℓmax(Φ(x) − Φ∗)

λ ν2

)

.

Formally, this is a consequence of Lemma 7 in the Appendix.

It is obvious that this result cannot be significantly improved since we can
easily construct an instance and a state such that the only possible improve-
ment that can be made is ν. Hence, already a single step takes pseudopoly-
nomially long. In case of polynomial latency functions Theorem 1 reads as
follows.
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Corollary 2 Consider a symmetric network congestion game with polynomial
latency functions with maximum degree d and minimum and maximum coef-
ficients amin and amax, respectively. Then the dynamics converge to an imita-
tion-stable state in expected time

O

(

d3m2n2d+2 ·

(

amax

amin

)2
)

.

In case of a singleton congestion game with monomial latency functions
ℓe(x) = a · xde we can improve the corollary as follows.

Corollary 3 Consider a symmetric singleton congestion game with monomial
latency functions with maximum degree d. Then the dynamics converge to an
imitation-stable state in expected time O

(

d3n2d+2
)

.

Let us remark that all proofs in this section do not rely on the assumption
that the underlying congestion game is symmetric or the underlying structure
is a network. In fact, the results hold accordingly for general asymmetric con-
gestion games in which each agent samples only among agents that have the
same strategy space.

3.2 Sequential Imitation Dynamics and a Lower Bound

In the previous subsection we proved that agents applying the Imitation

Protocol reach an imitation-stable state after a pseudopolynomial number
of rounds. Recall that in this case each agent decreases its latency by at least
ν if it were the only agent to change its strategy. In this section, we con-
sider sequential imitation dynamics such that in each round a single agent is
permitted to imitate someone else. Furthermore, we assume that each agent
changes its path regardless of the anticipated latency gain. For the discussion
in this section, we call states to be imitation-stable when no agent can im-
prove by imitating the strategy of any other agent. Now, it is obvious that
sequential imitation dynamics converge towards imitation-stable states as the
potential Φ strictly decreases after every strategy change. Hence, we focus on
the convergence time of such dynamics.

For such sequential imitation dynamics we prove an exponential lower
bound on the number of rounds to reach an imitation-stable state. To be
precise, we present a family of symmetric network congestion games with cor-
responding initial states such that every sequence of imitation leading to an
imitation-stable state is exponentially long. To some extent, this result com-
plements Theorem 1 as it presents an exponential lower bound in a slightly
different model. However, in this lower bound ν is arbitrarily large and almost
every state is imitation-stable with respect to the Imitation Protocol.

Theorem 2 For every n ∈ N, there exists a symmetric network congestion
game with n agents, initial state S init, polynomially bounded network size, and
linear latency functions such that every sequential imitation dynamics that
start in S init is exponentially long.



Concurrent Imitation Dynamics in Congestion Games 21

We do not give a complete proof of the theorem but we discuss how to
adapt a series of constructions as presented in [2] which show that there exists
a family of symmetric network congestion games with the same properties as
stated in the above theorem such that every best response dynamics starting in
S init is exponentially long. To be precise, they prove that in every intermediate
state of the best response dynamics exactly one agent can improve its latency.
Recall that in best response dynamics agents know the entire strategy space
and that in each round one agent is permitted to switch to the best available
path.

In the following, we summarize the constructions presented in [2]. At first,
a PLS-reduction from the local search variant of MaxCut to threshold games is
presented. In a threshold game, each agent either allocates a single resource on
its own or shares a bunch of resources with other agents. Hence, in a threshold
game each agent chooses between two strategies only. The precise definition
of these games is given below. Then, a PLS-reduction from threshold games
to asymmetric network congestion games is presented. Finally, the authors
of [2] show how to transform an asymmetric network congestion game into a
symmetric one such that the desired properties of best response dynamics are
preserved. All PLS-reductions are embedding reductions, and there exists a
family of instances of MaxCut with corresponding initial configurations such
that in every intermediate configuration generated by a local search algorithm
exactly one node can be moved to the other side of the cut. Therefore, there
exists a family of symmetric network congestion games with the properties as
stated above.

A naive approach to prove a lower bound on the convergence time of imita-
tion dynamics in symmetric network congestion games is as follows. Building
upon the lower bound of the convergence time of best response dynamics, for
every path an agent is added to the game. Then the latency functions are
adopted accordingly. However, in this case we would introduce an exponential
number of additional agents. In threshold games, however, the agents’ strategy
spaces only have size two. Hence, in the following we apply this approach to
threshold games. It is then straightforward to verify that the PLS-reductions
mentioned above can be reworked in order to prove Theorem 2. However,
note that this does not imply that computing a imitation-stable state is PLS-
complete since one can always assign all agents to the same strategy which
obviously constitutes an imitation-stable state.

Threshold games are a special class of congestion games in which the set
of resources R can be divided into two disjoint sets Rin and Rout. The set Rout

contains exactly one resource ri for every agent i ∈ N . This resource has a fixed
latency Ti called the threshold of agent i. Each agent i has only two strategies,
namely a strategy Sout

i = {ri} with ri ∈ Rout, and a strategy S in

i ⊆ Rin. The
preferences of agent i can be described in a simple and intuitive way: Agent
i prefers strategy S in

i to strategy Sout

i if the latency of S in

i is smaller than the
threshold Ti. Quadratic threshold games are a subclass of threshold games in
which the set Rin contains exactly one resource rij for every unordered pair of
agents {i, j} ⊆ N . Additionally, for every agent i ∈ N of a quadratic threshold
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game, S in

i = {rij | j ∈ N , j 6= i}. Moreover, for every resource rij ∈ Rin:
ℓrij (x) = ai,j ·x with aij ∈ N, and for every resource ri: ℓri(x) = 1/2

∑

j 6=i aij ·x
to ri.

Let Γ be a quadratic threshold game that has an initial state S init, such
that every best response dynamics which starts in S init is exponentially long,
and every intermediate state has a unique agent that can improve its latency.
Suppose now that we replace every agent i in Γ by three agents i1, i2 and
i3 which all have the same strategy spaces as agent i has. Additionally, sup-
pose that we choose new latency functions ℓ′ for every resource ri as follows:
ℓ′ri(x) = 1/2

∑

j 6=i aij · x+3/2
∑

j 6=i aij . Hence, we add an additional offset of
3/2

∑

j 6=i aij .
Suppose now that we assign every agent i1 to Sout

i , and every agent i2
to S in

i . For every possible strategy that the i3 agents can use, their latency
increases by 2

∑

j 6=i aij , compared to the equivalent state in the original game,
in which every agent i chooses the same strategy as agent i3 does. Hence, if
we assign every agent i3 to the strategy chosen by agent i in S init and if the
agents i1 and i2 were not permitted to change their strategies, then we would
obtain the desired lower bound on the convergence time of imitation dynamics
in threshold games. However, since also i1 and i2 are permitted to imitate, it
remains to show that whenever agent i3 has changed its strategy, then both
i1 and i2 do not want to change their strategies anymore.

First, suppose that agent i3 switches from the strategy of agent i2 to the
strategy of agent i1. Obviously, agent i1 does not want to change its strategy as
otherwise i3 would not have imitated i1. Suppose now that i2, whose strategy
is dropped by i3, also wants to imitate i1. In this case all three agents would
allocate Sout

i , and hence have latency 3
∑

r∈j 6=i aij . However, if agent i2 would
stay with strategy S in then its latency is upper bounded by 2

∑

r∈Sin
i
aij .

Hence, agents i1, i2, i3 will never select Sout at the same time.
Second, suppose that agent i3 switches from the strategy of agent i1 to the

strategy of agent i2. Now, agent i2 does not want to change its strategy as
otherwise i3 would not have imitated i2. Suppose now that i1, whose strategy is
dropped by i3, also wants to imitate i3. In this case, the latency would increase
to at least 3

∑

r∈j 6=i aij , whereas agent i1 would have latency 2
∑

r∈j 6=i aij if
it would stay with strategy Sout. Hence, agents i1, i2, i3 will never select S in at
the same time.

By applying the argument that all three agents never allocate the same
strategy at the same point in time we can conclude our claim and Theorem 2
follows.

3.3 Convergence to Approximate Equilibria

Theorem 1 guarantees convergence of concurrent imitation dynamics generated
by the Imitation Protocol to an imitation-stable state in the long run.
However, it does not give a reasonable bound on the time due to the small
progress that can be made. Hence, as our main result, we present bounds on
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the time to reach an approximate equilibrium. Here we relax the definition of
a state that is imitation-stable (with respect to the Imitation Protocol)
in two aspects: We allow only a small minority of agents to deviate by more
than a small amount from the average latency. Our notion of an approximate
equilibrium is similar to the notion used in [9,?,?]. It is motivated by the
following observation. When sampling other agents each agent gets to know
its latency if it would adopt that agent’s strategy. Hence to some extent each
agent can compute the average latency L+

av and determine if its own latency
is above or below that average.

Definition 1 ((δ,ǫ,ν)-equilibrium) Given a state x, let the set of expensive
paths be P+

ǫ,ν = {P ∈ P : ℓP (x) > (1 + ǫ)L+
av + ν} and let the set of cheap

paths be P−
ǫ,ν = {P ∈ P : ℓP (x) < (1 − ǫ)Lav − ν}. Let Pǫ,ν = P+

ǫ,ν ∪ P−
ǫ,ν. A

configuration x is at a (δ,ǫ,ν)-equilibrium iff it holds that
∑

P∈Pǫ,ν
xP ≤ δ · n.

Intuitively, a state at (δ,ǫ,ν)-equilibrium is a state in which almost all
agents are almost satisfied when comparing their own situation with the sit-
uation of other agents. One may hope that it is possible to reach a state in
which all agents are almost satisfied quickly. This would be a relaxation of the
concept of Nash equilibrium. We will argue below, however, that there is no
rapid convergence to such states.

Theorem 3 For an arbitrary initial assignment x(0), let τ denote the first
round in which the Imitation Protocol reaches a (δ,ǫ,ν)-equilibrium. Then,

E [τ ] = O

(

d

ǫ2 δ
· log

(

Φ(x(0))

Φ∗

))

.

Proof We consider a state x(t) that is not at a (δ,ǫ,ν)-equilibrium and derive
a lower bound on the expected potential gain. There are two cases. Either at
least half of the agents utilizing paths in Pǫ,ν utilize paths in P+

ǫ,ν or at least
half of them utilize paths in P−

ǫ,ν.

Case 1: Many agents use expensive paths, i. e.,
∑

P∈P+
ǫ,ν

xP ≥ δ n/2. Let us

define the volume T and the average ex-post latency C of potential desti-
nation paths, i. e., paths with ex-post latency at most (1 + ǫ)L+

av, by

T =
∑

Q:ℓ+Q≤(1+ǫ)L+
av

xQ

n
and C =

1

T

∑

Q:ℓ+Q≤(1+ǫ)L+
av

xQ

n
ℓ+Q .

Clearly,

L+
av =

∑

P

xP

n
ℓ+P ≥ T · C + (1− T ) · (1 + ǫ)L+

av ,

and solving for T yields

T ≥
ǫ L+

av

(1 + ǫ)L+
av − C

. (7)
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We now give an upper bound on (i.e., a lower bound on the absolute value
of) the expected virtual potential gain given that the current state is not at
a (δ,ǫ,ν)-equilibrium. We consider only the contribution of agents utilizing
paths in P+

ǫ,ν and sampling paths with ex-post latency below (1 + ǫ)L+
av.

Then,

E





∑

P,Q

VPQ



 ≤ −
λ

d

∑

P∈P+
ǫ,ν

xP

∑

Q:ℓ+≤(1+ǫ)L+
av

xQ

n
·
(ℓP − ℓQ(x+ 1Q − 1P ))

2

ℓP

= −
λ

d

∑

P∈P+
ǫ,ν

xP ℓP
∑

Q:ℓ+≤(1+ǫ)L+
av

xQ

n
·

(

ℓP − ℓ+Q
ℓP

)2

.

Using Jensen’s inequality (Fact 12) and substituting ℓP ≥ L+
av yields

E





∑

P,Q

VPQ



 ≤ −
λ

d
L+
av

∑

P∈P+
ǫ,ν

xP





∑

Q:ℓ+≤(1+ǫ)L+
av

xQ

n
·
ℓP − ℓ+Q

ℓP





2

·
1

∑

Q:ℓ+
Q
≤(1+ǫ)L+

av

xQ

n

.

Now we substitute ℓP ≥ (1 + ǫ)L+
av and use the fact that the squared

expression is monotone in ℓP . Furthermore, we substitute the definition of
T and C to obtain

E





∑

P,Q

VPQ





≤ −
λ

d
L+
av

∑

P∈P+
ǫ,ν

xP





T (1 + ǫ)L+
av −

∑

Q:ℓ+≤(1+ǫ)L+
av

xQ ℓ+Q
n

(1 + ǫ)L+
av





2

·
1

T

≤ −
λ

d
L+
av

∑

P∈P+
ǫ,ν

xP

(

T (1 + ǫ)L+
av − T C

(1 + ǫ)L+
av

)2

·
1

T

= −
λ

d
L+
av ·

(

(1 + ǫ)L+
av − C

(1 + ǫ)L+
av

)2

· T ·
∑

P∈P+
ǫ,ν

xP .
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We can now use the tradeoff shown in Equation (7), C ≤ L+
av, and

∑

P∈P+
ǫ,ν

xP >

δ n/2 to obtain

E





∑

P,Q

VPQ



 ≤ −
λ

d
· L+

av ·
(1 + ǫ)L+

av − C

((1 + ǫ)L+
av)2

· ǫ L+
av ·

∑

P∈P+
ǫ,ν

xP

≤ −
λ

d
· ǫ ·

ǫ L+
av

(1 + ǫ)2
·
δ n

2

≤ −Ω

(

ǫ2 · δ

d
· nL+

av

)

.

Since nL+
av ≥ Φ, we have by Lemma 2

E [Φ(x(t + 1))] ≤ Φ(x(t)) −
1

2
E





∑

P,Q

VPQ



 ≤ Φ(x(t))

(

1−Ω

(

ǫ2 · δ

d

))

.

Case 2: Many agents use cheap paths, i. e.,
∑

P∈P−
ǫ,ν

xP ≥ δ n/2. This time,

we define the volume T and average latency C of paths which are potential
origins of agents migrating towards P−

ǫ,ν.

T =
∑

Q:ℓQ≥(1−ǫ)Lav

xQ

n
and C =

1

T

∑

Q:ℓQ≥(1−ǫ)Lav

xQ

n
ℓQ .

This time,

Lav ≤ T · C + (1− T ) · (1 − ǫ)Lav

implying

T ≥
ǫ Lav

C − (1− ǫ)Lav
. (8)

Similarly as in Case 1 we now give a lower bound on the contribution to the
absolute value of the virtual potential gain caused by agents with latency
at least (1− ǫ)Lav sampling agents in P−

ǫ,ν .

E





∑

P,Q

VPQ



 ≤ −
λ

d

∑

Q:ℓQ≥(1−ǫ)Lav

xQ ℓQ
∑

P∈P−
ǫ,ν

xP

n
·

(

ℓQ − ℓ+P
ℓQ

)2

.
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we rearrange the sum, apply Jensen’s inequality (Fact 12) to obtain

E





∑

P,Q

VPQ





≤ −
λ

d

∑

P∈P−
ǫ,ν

xP

∑

Q:ℓQ≥(1−ǫ)Lav

xQ ℓQ
n

·

(

ℓQ − ℓ+P
ℓQ

)2

≤ −
λ

d

∑

P∈P−
ǫ,ν

xP





∑

Q:ℓQ≥(1−ǫ)Lav

xQ ℓQ
n

·
ℓQ − ℓ+P

ℓQ





2

·
1

∑

Q:ℓQ≥(1−ǫ)Lav

xQ ℓQ
n

= −
λ

d

∑

P∈P−
ǫ,ν

xP





∑

Q:ℓQ≥(1−ǫ)Lav

xQ

n
· (ℓQ − ℓ+P )





2

·
1

C T

= −
λ

d

∑

P∈P−
ǫ,ν

xP

(

T · (C − ℓ+P )
)2

·
1

C T

≤ −
λ

d
(T · (C − (1− ǫ)Lav))

2 ·
1

C T
·
∑

P∈P−
ǫ,ν

xP .

Finally, using Equation (8) and C T ≤ Lav,

E





∑

P,Q

VPQ



 ≤ −
λ

d
(ǫ Lav)

2 ·
1

C T
·
∑

P∈P−
ǫ,ν

xP

≤ −
λ ǫ2 Lav

d
δn

≤ −Ω

(

δ ǫ2 Φ

d

)

.

In both cases, the potential decreases by at least a factor of (1 − Ω(ǫ2 δ/d))
in expectation, which, by Lemma 7, implies that the expected time to reach a
state with Φ(x(t)) ≤ Φ∗ is at most the time stated in the theorem.

From Theorem 3 we can immediately derive the next corollary.

Corollary 4 Consider a symmetric network congestion game with polyno-
mial latency functions with maximum degree d and minimum and maximum
coefficients amin and amax, respectively. Then the dynamics converge to an
(δ,ǫ,ν)-equilibrium in expected time

O

(

d2

ǫ2 δ
· log

(

nm
amax

amin

))

.
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Let us remark that (δ,ǫ,ν)-equilibria are transient. They can be left again
once they are reached, e.g., if the average latency decreases or if agents migrate
towards low-latency paths. However, our proofs actually do not only bound
the time until a (δ,ǫ,ν)-equilibrium is reached for the first time, but rather
the expected total number of rounds in which the system is not at a (δ,ǫ,ν)-
equilibrium.

In the definition of (δ,ǫ,ν)-equilibria we require the majority of agents to
deviate by no more than a small amount from L+

av. This is because the expected
latency of a path sampled by an agent is Lav, but the latency of the destination
path becomes larger if the agent migrates. We use L+

av as an upper bound in
our proof, although we could use a slightly smaller quantity in cases where
the origin Q and the destination P intersect, namely ℓP (x + 1P − 1Q). Using
an average over P and Q of this quantity rather than L+

av results in a slightly
stronger definition of (δ,ǫ,ν)-equilibria. Here we used the weaker definition for
the sake of clarity.

Finally we outline fundamental limitations of fast convergence. One could
hope to show fast convergence towards a state in which δ = 0 and all agents
are approximately satisfied. Any protocol that proceeds by sampling either a
strategy or an agent and then possibly migrates, takes at least expected time
Ω(n) to reach a state in which all agents sustain a latency that is within a
constant factor of L+

av. To see this, consider an instance with n = 2m agents
and identical linear latency functions. Now, let x1 = 3, x2 = 1 and xi = 2
for 3 ≤ i ≤ n. Then, the probability that one of the agents currently using
resource 1 samples resource 2 is at most O (1/m) = O (1/n). Since this is the
only possible improvement step, this yields the desired bound.

4 Singleton Games and the Price of Imitation

4.1 The Lack of Innovation

In this section, we improve on our previous results and consider the special case
of singleton congestion games. In a singleton game every strategy of every agent
is a single element e ∈ E. A major drawback of the Imitation Protocol is
that agents who rely on this protocol cannot access any edges which are unused
in the starting state of the dynamics. Even worse, although an edge has been
used initially, it can become unused in later states. It is clear, however, that
when starting from a random initial distribution of agents among the edges,
the probability of emptying an edge becomes negligible as the number of agents
increases.

Subsequently, we formalize this statement in the following sense. Consider
a family of singleton congestion games over the same set of edges with latency
functions without offsets. If the strategies of agents are initialized uniformly at
random, the probability that an edge becomes unused is exponentially small
in the number of agents. To this end, consider a vector of continuous latency
functions L = (ℓe)e∈E with ℓe : [0, 1] → R≥0. To use these functions for games
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with a finite number of agents, we have to normalize them appropriately. For
any such function ℓ ∈ L, let ℓn with ℓn(x) = ℓ(x/n) denotes the respective
scaled function. We may think of this as having n agents with weight 1/n each.
Note that this transformation leaves the elasticity unchanged, whereas the step
size ν decreases as n increases. For a vector of latency functions L = (ℓe)e∈E ,
let Ln = (ℓne )e∈E .

For the proof of the theorems we need the following definitions. For a
singleton game with n agents, a set E of resources, and linear latency functions
ℓe(x) = ae x for every e ∈ E, the optimal fractional solution x̃ is the solution
x̃ ∈ [0, n]m such that

∑

e∈E x̃e = n and x̃ = argminSC(x), where the social
cost SC(x) =

∑

e∈E(xe/n) · ℓe(xe) is the average latency of the agent’s total
demand.

Theorem 4 Fix a vector of latency functions L with ℓe(0) = 0 for all e ∈ E.
For the singleton congestion game over Ln with n agents, the probability that
the Imitation Protocol with random initialization generates a state with
xe = 0 for some e ∈ E within poly(n) rounds is bounded by 2−Ω(n).

Proof Let d denote an upper bound on the elasticity of the functions in L,
and let optL = miny{Lav(y)} where the minimum is taken over all y ∈ {y′ ∈
R

m
≥0 |

∑

e y
′
e = 1}. In other words, optL corresponds to the minimum average

latency achievable in a fractional solution, i.e., to SC(x̃) for the current set
of latency functions L. For any e ∈ E, by continuity and monotonicity, there
exists an ye > 0 such that ℓe(ye) < optL /4d and ye < 1/m.

Consider the congestion game with n agents and fix an arbitrary edge
e ∈ E. In the following, we upper bound the probability that the congestion
on edge e falls below n ye/2. First, consider the random initialization in which
each resource receives an expected number of n/m agents. The probability that
xe < nye/2 ≤ n/(2m) is at most 2−Ω(nye). Now, consider any assignment x
with xj > nyj/2 for all e ∈ E. There are two cases.

Case 1: xe > ye n. Since in expectation, our policy removes at most a λ/d
fraction of the agents from edge e, the expected load in the subsequent
round is at least (1 − λ/d)xe. Since for sufficiently small λ it holds that
1− λ/d ≥ 3/4, we can apply a Chernoff bound (Fact 7) in order to obtain
an upper bound of 2−Ω(xe) for the probability that the congestion on e
decreases to below xe/2 ≥ ye n/2.

Case 2: ye n/2 < xe ≤ ye n. Hence, ℓne (xe) ≤ optL /4d. In the following, let n−

denote the number of agents on edges r with ℓnr (xr + 1) < ℓne (xe), and let
n+ denote the number of agents utilizing edges with latency above optL.
There are two subcases:
Case 2a: n− = 0. Then, the probability that an agent leaves edge e is 0.
Case 2b: n− ≥ 1. We first show that n+ ≥ 4 max{n−, xe}. For the sake

of contradiction, assume that n+ < 4n−. Now, consider an assignment
where all of these agents are shifted to edges r with latency ℓnr (xr) <
ℓne (xe) ≤ optL /4d, where edge r receives n+ ·xr/n

− (fractional) agents.
In this assignment, the congestion on all edges is increased by no more
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than a factor of n+/n− < 4. Hence, due to the limited elasticity, this
increases the latency by strictly less than a factor of 4d. Then, all edges
have a latency of less than optL /4 · 4 = optL and some have latency
strictly less than optL, a contradiction. The same argument also holds
if we consider only resource e rather than all resources r considered
above. Hence, also n+ ≥ 4 xe.
Now, consider the number of agents leaving edge e. Clearly,

E
[

∆X−
e

]

≤ xe ·
λ

d

∑

r:ℓnr (xr+1)<ℓne (xe)

xr

n
= xe ·

λn−

dn
.

All agents with current latency at least optL can migrate to resource e
since the anticipated latency gain is larger than ν. Hence, the number
of agents migrating towards e, is at least

E
[

∆X+
e

]

≥
∑

r:ℓnr (xr)≥opt
L

xr ·
λxe · (ℓnr (xr)− ℓne (xe + 1))

n d ℓnr (xr)

≥
λxe

n d
·

∑

r:ℓnr (xr)≥opt
L

xr ·
ℓnr (xr)− 2d · ℓne (xe)

ℓnr (xr)

≥
λxe

n d
· (1−

1

2d
) · n+

≥ 2 · xe ·
λ

dn
max{n−, xe} .

The third inequality holds since ℓnr ≥ optL and ℓne ≤ optL /4d and the
last inequality holds since d ≥ 1. For any T ≥ 0 it holds that

P [∆Xe ≥ 0] ≥ P
[

(∆X+
e ≥ T ) ∧ (∆X−

e ≤ T )
]

≥
(

1− P
[

∆X+
e < T

])

·
(

1− P
[

∆X−
e > T

])

.

Due to our lower bounds on E [∆X+
e ] and E [∆X−

e ] we can apply a
Chernoff bound (Fact 7) on these probabilities. We set

T = 1.5λ max{xe, n
−} xe/(dn)

which upper bounds E [∆X−
e ] and lower bounds on E [∆X+

e ], so

P
[

∆X+
e < T

]

≤ 2−Ω(T ) ≤ 2−Ω(λx2
e/(d n)) and

P
[

∆X−
e > T

]

≤ 2−Ω(T ) ≤ 2−Ω(λx2
e/(d n)) .

Altogether,

P [∆Xe ≥ 0] ≥

(

1− 2
−Ω

(

λx2
e

d n

))

·

(

1− 2
−Ω

(

λ x2
e

d n

))

= 1− 2
−Ω

(

λx2
e

dn

)

.

Finally, since xe ≥ n ye/2, P [∆Xe < 0] ≤ 2−Ω(λny2
e/d) = 2−Ω(xe).
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In all cases, the probability that the edge becomes unused is bounded by
2−Ω(xe) = 2−Ω(n). Hence, the same holds also for m = poly(n) edges and
poly(n) rounds.

The proof does not only show that edges do not become empty with high
probability, but also that the congestion does not fall below any constant con-
gestion value. This is the only place where our analysis relies on the parameter
ν. Thus, if the number of agents is large, we can remove ν from the protocol,
and the dynamics converge to an exact Nash equilibrium with high probability.

4.2 The Price of Imitation

In the preceding section we have seen that it is unlikely for resources to become
unused when the granularity of an agent decreases. If the instance, i. e., the
latency functions and the number of users, is fixed, it is an interesting ques-
tion, how much the performance can suffer from the fact that the Imitation

Protocol is not innovative. We measure this degradation of performance
by introducing the Price of Imitation which is defined as the ratio between
the expected social cost of the state to which the Imitation Protocol con-
verges, denoted IΓ , and the optimum social cost. The expectation is taken
over the random choices of the Imitation Protocol. Let us point out that
throughout this section we again use the assumption that strategies are ini-
tialized uniformly at random for each agent. When we consider expectations
over random choices of the Imitation Protocol, random choices during the
initialization are naturally included.

We bound the performance degradation for the case of linear latency func-
tions of the form ℓe(x) = ae x. Then, d = 1 is an upper bound on the elas-
ticity and ν = amax = maxe∈E{ae}. Choosing the average latency SC(x) =
∑

e∈E(xe/n)·ℓe(xe) as the social cost measure, we show in Theorem 5 that the
Price of Imitation is bounded by a constant. It is, however, obvious that the
same also holds if we consider the maximum latency as social cost function.

The performance of the dynamics can be artificially degraded by introduc-
ing an extremely slow edge. Thus, amax can be chosen extremely large such
that any state is imitation-stable. However, such a resource can be removed
from the instance without harming the optimal solution at all since it would
not be used anyhow. We will call such resources useless and make this notion
precise as follows. For a set of resources M ⊆ E, let AM =

∑

e∈M
1
ae

and let
AΓ = AE . Note that the optimal fractional solution x̃e can be computed as
x̃e = n/(AΓ ae). For this solution, the latency of all resources is ae ·x̃e = n/AΓ .
A resource e ∈ E is useless if x̃e < 1.

Let us give a rough outline of the proof. We do not compare the outcome
of the Imitation Protocol to the optimum solution, but rather to a lower
bound, namely the optimal fractional solution. In particular, we assume that
there are no useless resources. Then, we can show that the social cost at
an imitation-stable state in which all resources are used, does not differ by
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more than a small constant from the optimal social cost and that the Price of
Imitation is small. In fact, whereas we have x̃e ≥ 1 for the former statement,
for bounding the Price of Imitation we need a slightly stronger assumption,
namely that xe = Ω(log n).

Theorem 5 Suppose that in a singleton congestion game with linear latency
functions the optimal fractional solution satisfies x̃e = Ω(logn). Then the
Price of Imitation with random initialization is at most (3 + o(1)). In partic-
ular, for δ > 0, and any n ≥ n0(δ) for a large enough value n0(δ) (which is
independent of the instance), IΓ ≤ (3 + δ) · n

AΓ
.

We start by proving two lemmas.

Lemma 3 Let x be a state in which no agent can gain more than amax. Then,

n

AΓ
≤ SC(x) ≤ 3

n

AΓ
.

Proof The lower bound has been proven above since n/AΓ is the social cost
of an optimal fractional solution. Also note that, since there are no useless
resources, x̃e ≥ 1 and hence n/AΓ ≥ amax.

For the upper bound, consider a state x in which no agent can gain more
than amax. For the sake of contradiction assume that there exists a resource
e ∈ E with ℓe(xe) > 3n/AΓ . Since x 6= x̃ there exists a resource f 6= e with
xf < x̃f . In particular, ℓf(xf + 1) < n/AΓ + amax ≤ 2n/AΓ ≤ ℓe(xe)− amax.
The last inequality holds due to our assumption on ℓe(xe) and since n/AΓ ≥
amax. Hence, any agent on resource e can improve by amax by migrating to f ,
a contradiction.

Lemma 4 The Imitation Protocol converges towards an imitation-stable
state in time O

(

n4 logn
)

.

Proof Consider a state x(t) in which there is at least one agent who can make
an improvement of amax. Since its current latency is at most n · amax and the
probability to sample the correct resource is at least 1/n, the probability to do
so is at least λ·(1/n)·(amax/(n amax)) = λ/n2 and the virtual potential gain of
such a step is amax ≥ Φ/n2. Hence, the absolute value of the expected virtual
potential gain in state x(t) is at least λΦ(x(t))/n4. Hence, by Lemma 2,

E [Φ(x(t + 1))] ≤ Φ(x(t)) ·

(

1−
λ

2n4

)

.

Note that Φ∗ ≥ n amin and amax ≤ n amin by the assumption that no resource
is useless. Also, Φ(x(0)) ≤ n2 amax. Now, the lemma follows by an application
of Lemma 8 in the Appendix.

Based upon the proof of Theorem 4 we can now bound the probability
that a resource becomes empty for the case of linear latency functions more
specifically.
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Lemma 5 The probability that all resources of the subset M ⊆ E become
empty in one round simultaneously is bounded from above by

∏

e∈M

2
−Ω

(

n
AΓ ae

)

.

Proof Recall the bounds on the probability that a resource e ∈ E becomes
empty in the proof of Theorem 4. Since we now consider linear latency func-
tions, we may explicitly compute the value of ye = 1/(AΓ ae). Recall the two
cases and the failure probability in the initialization:

Initialization: Here, the error probability was at most 2−Ω(nye) = 2
−Ω

(

n
AΓ ae

)

.

Case 1: xe > ye n. Here, the error probability was at most 2−Ω(xe) = 2
−Ω

(

n
AΓ ae

)

.
Case 2: ye n/2 < xe ≤ ye n. Here, the error probability was at most 2−Ω(x2

e/n) =

2
−Ω

(

n

(AΓ ae)2

)

.

In all cases, the probability that resource i becomes empty is at most 2
−Ω

(

n
AΓ ae

)

.
Furthermore, consider resources e and e′ and let B and B′ denote the

events that e and e′ become empty, respectively. It holds that, P [B′ | B] ≤
P [B′]. Therefore, P [B ∩B′] = P [B] ·P [B′ | B] ≤ P [B] ·P [B′]. Extending this
argument to several resources yields the statement of the lemma.

Using the above two lemmas, we can now prove the main theorem of this
section.

Proof (Proof of Theorem 5) The proof is by induction on the number of re-
sources m. Clearly, the statement holds for m = 1, in which case there is only
one assignment. In the following we divide the sequence of states generated by
the Imitation Protocol into phases consisting of several rounds. The phase
is terminated by one of the following events, whatever happens first:

1. A subset of resources M becomes empty.
2. The Imitation Protocol reaches an imitation-stable state.
3. The protocol enters round Θ(n5 logn).

For M ⊆ E let Γ \M denote the instance obtained from Γ by removing all
resources in M . If a phase ends because Event 1 occurs, we start a new phase
for the instance Γ \M . If it ends because of Event 3, we start a new phase for
the original instance.

The probability for Event 1 is bounded by Lemma 5. Note that the prob-
ability is also bounded for up to poly(n) many rounds. If a phase ends with
Event 2 we have IΓ ≤ 3 n

AΓ
(Lemma 3). We bound the probability of this

event by 1, which is trivially true. Event 3 happens with a probability at most
O (1/n). This can be shown using Lemma 4 and Markov’s inequality. Note
that the expected social cost is still at most IΓ . Summing up over all three
events, we obtain the following recurrence:

IΓ ≤
∑

M⊂E

∏

e∈M

2
−Ω

(

n
AΓ ae

)

· IΓ\M + 3 ·
n

AΓ
+O

(

1

n

)

· IΓ
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implying

IΓ ·

(

1−O

(

1

n

))

≤ 3 ·
n

AΓ
+
∑

M⊂E

∏

e∈M

2
−Ω

(

n
AΓ ae

)

· IΓ\M .

Substituting the induction hypothesis for IΓ\M , and introducing a constant c
for the constant in the Ω(),

IΓ ·

(

1−O

(

1

n

))

≤ 3 ·
n

AΓ
+
∑

M⊂E

∏

e∈M

2
− c n

AΓ ae · 4
n

AΓ\M

= 3 ·
n

AΓ
+ 4

n

AΓ

∑

M⊂E

2
−

c nAM
AΓ ·

AΓ

AΓ\M
.

Now, by our assumption that for all e ∈ M , x̃e = n/(AΓ · ae) ≥ Ω(log n),
we know that for all e, 1/ae ≥ c′ AΓ · logn/n for a constant c′ which we may
choose appropriately. In particular, AM ≥ |M |c′ AΓ · log n/n and AΓ\M ≥
c′ AΓ · logn/n. Altogether,

IΓ ·

(

1−O

(

1

n

))

≤
n

AΓ

(

3 + 4
∑

M⊂E

2−c c′ |M| logn ·
n

c′ logn

)

=
n

AΓ

(

3 + 4
m−1
∑

k=1

(

m

k

)

2−c c′ k logn ·
n

c′ log n

)

≤
n

AΓ

(

3 + 4

m−1
∑

k=1

nk · 2−c c′ k logn ·
n

c′ logn

)

≤
n

AΓ

(

3 + 4

m−1
∑

k=1

2−(c c′−1) k logn ·
n

c′ logn

)

≤
n

AΓ

(

3 + 4

m−1
∑

k=1

n−(c c′−1) k+1

c′ logn

)

≤ (3 + o(1))
n

AΓ
,

since the last sum is bounded by o(n). This implies our claim.

5 Exploring New Strategies

In Section 3 we have seen that in the long run the dynamics resulting from the
Imitation Protocol converges to an imitation-stable state in pseudopolyno-
mial time. The Imitation Protocol and the concept of an imitation-stable
state have the drawback that the dynamics can stabilize in a very disadvanta-
geous state, e.g. when all agents play the same expensive strategy. This results
from the strategy space being restricted to the current strategy choices of the
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agents. Strategies that might be attractive and offer a large latency gain are
“lost” once no agent uses them anymore.

A stronger result would be convergence towards a Nash equilibrium. In the
literature on congestion games, several other protocols are discussed. For all
of the protocols we are aware of, the probability to migrate from one strategy
to another depends in some continuous, non-decreasing fashion on the antici-
pated latency gain, and it becomes zero for zero gain. Hence, in a setting with
arbitrary latency functions which we consider here, there always exist simple
instances and states that are not at equilibrium and in which only one im-
provement step is possible which has an arbitrarily small latency gain. Hence,
it takes pseudopolynomially long until an exact Nash equilibrium is reached.
Still, even without efficient convergence time it might be desirable to design a
protocol which reaches a Nash equilibrium in the long run. There are several
ways to achieve this goal. We will discuss three of them here.

Theorem 4 states the following for a particular class of singleton congestion
games. With an increasing number of agents it becomes increasingly unlikely
that useful strategies are lost. This allows to omit the parameter ν from the
protocol. If no strategies are lost for a long period of time, the dynamics will
converge to an exact Nash equilibrium. Hence, when the setting corresponds
to an instance from this class of congestion games, convergence to a Nash
equilibrium can be achieved simply by omitting the parameter ν.

Second, we may add an additional “virtual agent” to every strategy, such
that the probability to sample a strategy never becomes zero. This has two
implications on our analysis. On the one hand, there is a certain base load on
all resources, denoted by x0

e. We then need to have an upper bound on the
elasticity of ℓe(x − x0

e) which may be larger than the elasticity of ℓe(x) itself.
Furthermore, we have to add |P| virtual agents, which leaves the analysis of
the time of convergence unchanged only if n = Ω(|P|).

As a third alternative, we can add an exploration component to the proto-
col. With a probability of 1/2, the agents can sample another path uniformly
at random rather than another agent. In this case, however, the elasticity d
cannot be used as a damping factor anymore, since the expected increase of
congestion may be much larger than the current load. Rather, we have to

reduce the migration probability by a factor min
{

1, |P| ℓmin

β n

}

where β is an

upper bound on the maximum slope and ℓmin = mine∈E ℓe(1) is the minimum
latency of an empty resource.

Lemma 6 Let x denote a state and let ∆X denote a random migration vector
generated by the Exploration Protocol. Then,

E [∆Φ(x,∆X)] ≤
1

2

∑

P,Q∈P

E [VPQ(x,∆X)] .

Proof We use a similar approach as in Lemma 2. We first separate the potential
gain into virtual potential gain and error term. Recall that Lemma 1 states
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Protocol 2 Exploration Protocol, repeatedly executed by all agents.
Let P denote the path of the agent in state x.
Sample another path Q ∈ P uniformly at random.
if ℓP (x) > ℓQ(x+ 1Q − 1P ) then

with probability

µPQ = min

{

1, λ ·
|P| ℓmin

β n
·
ℓP (x)− ℓQ(x+ 1Q − 1P )

ℓP (x)

}

migrate from path P to path Q.
end if

the following for every state x and every migration vector ∆x

∆Φ(x,∆x) ≤
∑

P,Q∈P

VPQ(x,∆x) +
∑

e∈E

Fe(x,∆x) .

Recall that the main difficulty in Lemma 2 was to prove the upper bound on

E

[

∆ℓ̃e(∆X̃e)
]

in Equations (2) and (3). Once this upper bound was estab-

lished, it was straightforward to argue that the sum of error terms
∑

einE Fe(x,∆x)
is at most half of the absolute value of the virtual potential gain. Thus, the
error alters the potential gain by at most a factor of 2 and the lemma was
proven.

Here we use exactly the same approach. The only part we adjust is the

upper bound on E

[

∆ℓ̃e(∆X̃e)
]

, because for the Exploration Protocol

deriving this bound turns out to be extremely simple. First consider the case
of an edge e ∈ Q\P . Then due to the linearity of expectation,

E

[

∆ℓ̃e(∆X̃e)
]

≤ β E

[

∆X̃e

]

≤ β n · λ ·
ℓmin |P|

β n
·

1

|P|
·
ℓP − ℓ+Q

ℓP

≤ λ ·
ℓ+e
ℓ+Q

· (ℓP − ℓ+Q) ,

where we have substituted the migration probability of the protocol and the
fact that there are at most n agents that may sample a path containing e.
When λ is chosen small enough, this proves Equation (2), i.e.,

E

[

∆ℓ̃e

(

∆X̃e

)]

≤
1

8
· (ℓP − ℓ+Q) ·

(

ℓ+e
ℓ+Q

+
νe
νQ

)

.

A similar argument can be used to prove the statement of Equation (3) for
the Exploration Protocol in the case e ∈ P .

Note that we have omitted the parameter ν from the protocol. Thus, in
principle, agents can make arbitrarily small improvements. However, in order
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to give an upper bound on the convergence time, we need some lower bound
on the minimum improvement that is possible when the system is not yet at
an imitation-stable state. Formally, let

κ = min
x

min
P,Q ∈ P

ℓp(x) > ℓQ(x+ 1Q − 1P )

{ℓP (x)− ℓQ(x+ 1Q − 1P )} .

Theorem 6 Consider a symmetric network congestion game in which all
agents use the Exploration Protocol. Let x denote the initial state of
the dynamics. Then the dynamics converge to a Nash equilibrium in expected
time

O

(

Φ(x)β n ℓmax

ℓmin κ2

)

.

Proof In every state which is not a Nash equilibrium there exists an agent
currently utilizing path P ∈ P and a path Q ∈ P such that ℓQ ≤ ℓP − κ.
Hence, the (absolute value of the) expected virtual potential gain is

E [VPQ] ≤ −
1

|P|
·
λ |P| ℓmin

β n
·
κ

ℓP
· κ ≤ −

λ ℓmin

β n
·

κ2

ℓmax
,

and the true potential gain differs from this only by a factor of at most 1/2.
Again, Lemma 7 yields the expected time until the potential decreases from
at most Φ to Φ∗ ≥ 0 and proves the theorem.

It is obvious that an analogue of Lemmata 2 and 6 also holds for any proto-
col that is a combination of the Imitation Protocol and the Exploration
Protocol, e. g., a protocol in which in every round every agent executes the
one or the other with probability one half. Then, in order to bound the value

of E
[

∆ℓ̃e(∆X̃e)
]

, we must make a case differentiation based on whether pro-

portional or uniform sampling dominates the probability that other agents
migrate towards resource e. Such a protocol combines the advantages of the
Imitation Protocol and the Exploration Protocol: In the long run, it
converges to a Nash equilibrium, and it reaches an approximate equilibrium
as quickly as stated by Theorem 3 (up to a factor of 2).

6 Conclusion

We have proposed and analyzed a natural protocol based on imitating prof-
itable strategies for distributed selfish agents in symmetric congestion games.
If agents use our Imitation Protocol, the resulting dynamics converge
rapidly to approximate equilibria, in which only a small fraction of agents
have latency significantly above or below the average. In addition, in finite
time the dynamics converge to an imitation-stable state, in which no agent
can improve its latency by more than ν by imitating a different agent. The
Imitation Protocol and the concept of an imitation-stable state have the
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drawback that dynamics can stabilize in a quite disadvantegous situation, e.g.
when all agents play the same expensive strategy. This is due to the fact that
the strategy space is essentially restricted to the current strategy choices of
the agents. Strategies that might be attractive and offer large latency gain
are “lost” once no agent uses them anymore. For singleton congestion games
we showed that this event becomes unlikely to occur as the number of agents
increases. Then, by removing parameter ν from the protocol, the dynamics be-
come likely to converge to Nash equilibria. Another approach to avoid losing
strategies is to include exploration of the strategy space. To this end, we can
use an Exploration Protocol, in which agents sample from the strategy
space directly and then migrate with a certain probability. If every agent uses
a suitably designed Exploration Protocol (or any random combination
of Exploration Protocol and Imitation Protocol), then the dynamics
are always guaranteed to converge to a Nash equilibrium, and they still reach
approximate equilibria rapidly.
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20. Simon Fischer and Berthold Vöcking. Adaptive routing with stale information. Theoret.
Comput. Sci., 410(36):3357–3371, 2008.

21. Dimitris Fotakis, Alexis Kaporis, and Paul Spirakis. Atomic congestion games: Fast,
myopic and concurrent. Theory Comput. Syst., 47(1):38–49, 2010.

22. Dimitris Fotakis, Spyros Kontogiannis, and Paul Spirakis. Atomic congestion games
among coalitions. ACM Trans. Algorithms, 4(4), 2008.

23. Paul Goldberg. Bounds for the convergence rate of randomized local search in a mul-
tiplayer load-balancing game. In Proc. 23rd Symp. Principles of Distrib. Comput.
(PODC), pages 131–140, 2004.
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A Appendix

Throughout the technical part of this paper, we apply the following two Chernoff bounds.

Fact 7 (Chernoff, see [24]). Let X be a sum of Bernoulli variables. Then, P [X ≥ k · E [X]] ≤

e−E[X] k·(ln k−1), and, for k ≥ 4 > e4/3, P [X ≥ k · E [X]] ≤ e−
1
4
E[X] k ln k. Equivalently, for

k ≥ 4E [X], P [X ≥ k] ≤ e−
1
4
k ln(k/E[X]).

The following fact yields a linear approximation of the exponential function.

Fact 8. For any r > 0 and x ∈ [0, r], it holds that (ex − 1) ≤ x · er−1
r

.

Proof The function exp(x)−1 is convex and it goes through the points (0, 0) and (r, er −1),

as does the function x · er−1
r

.

Fact 9. It holds that
∞
∑

k=1

e−k(ln k) · k < 2 .

Proof We have

∞
∑

k=1

e−k(ln k) · k =
∞
∑

k=1

1

kk−1
= 1 +

∞
∑

k=2

1

kk−1
< 1 +

∞
∑

k=1

1

2k
≤ 2 .

Fact 10. It holds that
∞
∑

k=2

e−k(ln(k)−1) · k < 8 .

Proof We have

∞
∑

k=2

e−k(ln(k)−1) · k =
∞
∑

k=1

e ·

(

e

k + 1

)k

=
4
∑

k=1

e ·

(

e

k + 1

)k

+
∞
∑

k=5

e ·

(

e

k + 1

)k

< 7.1 + e ·
∞
∑

k=5

1

2k
< 8 .

Fact 11. For every c ∈]0, 1[ it holds

∞
∑

k=0

ck =
c

1− c

∞
∑

k=l

ck =
cl

1− c
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Fact 12 (Jensen’s Inequality). Let f : R → R be a convex function, and let a1, . . . , ak , x1, . . . , xk ∈
R. Then

f

(

∑k
i=1 aixi
∑k

i=1 ai

)

≤

∑k
i=1 aif(xi)
∑k

i=1 ai
.

If f(x) = x2, then

(

∑k
i=1 aixi
∑k

i=1 ai

)2

≤

∑k
i=1 ai(xi)

2

∑k
i=1 ai

⇔
1

∑k
i=1 ai

·

(

k
∑

i=1

aixi

)2

≤
k
∑

i=1

aif(xi) .

Lemma 7 Let X0,X1, . . . denote a sequence of non-negative random variables and assume
that for all i ≥ 0

E [Xi | Xi−1 = xi−1] ≤ xi−1 − 1

and let τ denote the first time t such that Xt = 0. Then,

E [τ | X0 = x0] ≤ x0 .

The proof follows, e.g., from standard martingale arguments in combination with the
optional stopping theorem and is omitted here.

Lemma 8 Let X0,X1, . . . denote a sequence of non-negative random variables and assume
that for all i ≥ 0 E [Xi | Xi−1 = xi−1] ≤ xi−1 ·α for some constant α ∈ (0, 1). Furthermore,
fix some constant x∗ ∈ (0, x0] and let τ be the random variable that describes the smallest
t such that Xt ≤ x∗. Then,

E [τ | X0 = x0] ≤
4

1− α
· ln

(

2x0

x∗

)

.

Proof Let us define γ = 1
1−α

and an auxiliary random variable Y t by Y 0 := X0, and for

any round t ≥ 1,

Y t =

{

Xt if Xt > x∗

0 otherwise.

Then, for any t ≥ 1, it follows

E
[

Y t | Xt−1 = x
]

≤ αx.

We have for κ = γ · (ln(x0)− ln(x∗/2)),

E
[

Y t
]

=
∑

x

E
[

Y t | Xt−1 = x
]

· P
[

Xt−1 = x
]

≤
∑

x

α · Y t−1 · P
[

Xt−1 = x
]

≤ ατ · Y 0 ≤ x∗/2.

Hence by Markov’s inequality,

P [Y κ ≥ x∗] ≤
1

2
. (9)

We consider two cases.
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Case 1: For all time steps t ∈ [0, . . . , κ], Y t = Xt. Then, as seen above Xκ ≤ x∗ with
probability at least 1/2.

Case 2: There exists a step t ∈ [1, . . . , κ] such that Y t 6= Xt. Let t be the smallest time
step with that property. Hence, Y t 6= Xt, but Y t−1 = Xt−1. If Y t−1 = 0, then Xt−1 = 0.
If Y t−1 6= 0, then by definition of Y t,

(

Y t 6= Xt
)

∧

(

Y t−1 6= 0
)

⇒ Xt ≤ x∗.

In all cases we have shown that with probability at least 1/2, there exists a step t ∈ [0, κ]
so that Xt ≤ x∗. If such a step does not exist, we simply repeat the analysis and consider the
next κ steps. The probability that we do not observe a step as desired decreases exponentially
in the number of restarts. In expectation, we need only

∑

∞

k=1 k/2
k−1 = 4 phases of κ steps

to observe a step as desired. Thus, the expected number of steps is at most τ = 4κ. This
completes the proof of the lemma.
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