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Abstract

We consider a dynamic load balancing scenario in which users allocate resources in a non-cooperative
and selfish fashion. The perceived performance of a resource for a user decreases with the number of
users that allocate the resource. In our dynamic, concurrent model, users may reallocate resources in
a round-based fashion. As opposed to various settings analyzed in the literature, we assume that users
have quality of service (QoS) demands. A user has zero utility when falling short of a certain minimum
performance threshold and having positive utility otherwise.

Whereas various load-balancing protocols have been proposed for the setting without quality of service
requirements, we consider protocols that satisfy an additional locality constraint: The behavior of a
user depends merely on the state of the resource it currently allocates. This property is particularly
useful in scenarios where the state of other resources is not readily accessible. For instance, if resources
represent channels in a mobile network, then accessing channel information may require time-intensive
measurements.

We consider several variants of the model, where the quality of service demands may depend on the
user, the resource, or both. For all cases we present protocols for which the dynamics converge to a state
in which all users are satisfied. More importantly, the time to reach such a state scales nicely. It is only
logarithmic in the number of users, which makes our protocols applicable in large-scale systems.
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1 Introduction

The recent decade has witnessed the advent of large computational systems, which work massively parallel
or are composed of a multitude of decentralized units. In such systems load balancing is an essential need
to provide satisfactory functionality. In the literature classic load balancing problems are often modeled
and analyzed using a centralized and rather static approach, in which an optimization algorithm is able to
detect all relevant parameters and to centrally implement a solution. Such an approach, however, neglects
important characteristics of current load balancing problems in distributed systems, such as, e.g., in the
channel allocation process in wireless networks. Due to their size and decentralized nature, it becomes
infeasible to even detect all relevant parameters that a global optimization would require. Instead, recent
work has focused on distributed protocols, in which decisions about task allocation are transfered from a
central authority to independent users, namely, the tasks themselves. Exploring the possibilities of this more
realistic paradigm has attracted a lot of attention in algorithmic game theory on the incentives for rational
users in load balancing scenarios [23]. Ideally, the population of users converges rapidly to a balanced state,
while each user independently decides about the allocation of his task based only on local information, and
without cooperation or global coordination. As a side product of the rationality assumption, users still need
to have some global knowledge about loads and latencies to make fully informed decisions. This makes
them much less applicable in a decentralized setting. In contrast, in practice users are often satisfied if they
obtain a certain minimum performance, e.g., a maximum response time or latency – independent of the fact
whether the performance on a different resource is slightly better or not. In this paper, we incorporate this
idea and study resource allocation problems with users having such Quality of Service (QoS) demands. This
will allow us to provide algorithms that do not require global coordination or cooperation and yield rapid
convergence to balanced states, while significantly strengthening the locality constraint.

1.1 Model and Results

Let us at first formally introduce our model and state our results before we proceed with a discussion and
motivation of the modeling choices. We consider a distributed load-balancing problem with a set R of m
resources and a set N of n users. For a fixed assignment of users to resources, let x denote the congestion
profile of the resources, i. e., xr denotes the number of users allocating resource r in this assignment. For
every user i ∈ N and every resource r ∈ R, let T ir ∈ N be the threshold of user i on resource r. That is,
if user i allocates resource r, and if xr ≤ T ir , then user i is satisfied with resource r. Otherwise, a user is
unsatisfied with resource r. An assignment is called balanced or in a stable state if all users are satisfied with
their currently allocated resource.

We say that an instance of the load balancing problem is user-independent if for every resource r ∈ R
there exists Tr such that T ir = Tr for all i ∈ N , and user-specific otherwise. Similarly, we say that an instance
is resource-independent if for every user i ∈ N there exists T i such that T ir = T i for all r ∈ R, and resource-
specific otherwise. Finally, an instance is uniform if it is both resource-independent and user-independent.

In our model, we assume that each user controls a similar piece of unsplittable load that needs to be
allocated to one of the resources. The performance of a resource degrades with the total number of users
allocating their load to it (or, equivalently, with the total load assigned to the resource). We assume that the
assignment of users to resources is controlled by the users themselves, and that they act in a non-cooperative
manner, i. e. they independently form decisions about allocation of their tasks. We assume that users are
satisfied if the performance of their chosen resource exceeds a certain threshold. Only unsatisfied users try to
move over time and improve by exchanging their chosen resource. In our scenario we assume that there is no
central authority that dictates or manages the allocation. Instead, we are interested in obtaining distributed
algorithms that (1) can be executed by the users locally and (2) yield rapid convergence to balanced states.
We would like to avoid that users must have a global view of the system, they should only use information
that is available locally. This includes, for example, that we do not require users to coordinate their actions,
that the algorithms are stateless (i.e., users do not need to have memory), and that users base their migration
decisions only on the quality of their currently allocated resource. Furthermore, the convergence time should
be sublinear in the number of users, which is essential for rapid convergence in large-scale systems. Note
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that such a goal can only be obtained by algorithms that allow concurrent migration.
In Section 2 we consider the uniform case that each resource r yields a threshold Tr for all users. If every

Tr is at least by a constant (exceeding unity by an arbitrarily small amount) larger than an average load
n/m, the convergence time of our algorithm is only O (log n). In case the above average property is absent,
but thresholds Tr admit a stable state, we can adjust the algorithm to yield a convergence time logarithmic
in n, but polynomial in m. It is not surprising that m must occur polynomially in this bound since it might
be that there exists a single good resource whereas all other resources are poor. If all users must eventually
move to the same resource, it takes expected time Ω(m) for a single user running our algorithm to find this
resource.

The above average property expresses an intuitive condition, e.g., if all users and resources have similar
requirements and performance properties, respectively. In this case, all thresholds should be similar, and
therefore be approximately n/m to guarantee the existence of a stable state. In addition, our results indicate
that above average thresholds represent “nice” cases of the load balancing problem, where we can obtain
convergence times independent of m.

In Section 3 we consider the case that the threshold does not only depend on the resource, but is also
user-specific. We then consider a protocol in which overloaded resources deallocate some of their users which
subsequently reallocate resources chosen uniformly at random. Again, if thresholds have the above average
property, the convergence time only depends in a logarithmic fashion on the number of users. In this case, the
above average property is also necessary, as there are simple examples in which we fail to achieve convergence
at all.

Finally, Section 4 shows how our protocols can be applied if even the number of users is unknown. We
conclude the paper in Section 5 with some open problems for future work.

1.2 User Thresholds

We assume satisfaction of users depends on whether the current performance of the resource is above a
threshold. The idea of such threshold functions has recently found interest in different areas of distributed
systems. An example, which is close to our focus, are recent advances in the modeling of interference and
channel allocation in wireless networks. Traditionally, this problem has been studied using geometric inter-
section graphs, where a node can successfully access a channel whenever all neighboring nodes are inactive.
This gives rise to independent set and coloring problems, which have been treated extensively. More re-
cently, the focus has shifted to the more realistic physical model of interference [18], which is widely used
in engineering. In this scenario, interferences do not come as binary conflicts, but they are quantifiable
and accumulate. The central criterion of success is that the so-called signal-to-interference-plus-noise ratio
(SINR) satisfies a threshold. This bounds the maximum allowable amount of interference (and noise) such
that successful communication on a channel is still possible. In this case, channel allocation becomes essen-
tially a graph-based load balancing problem with user thresholds, where resources are channels, “loads” are
interferences, and the threshold of satisfaction is given by the bound on the SINR ratio. In this way, the
model and the algorithms studied in this paper can be used as a (rather coarse) approach to distributed and
rapid minimization of interference (see [22]). However, our focus here is not to treat this specific applica-
tion in detail. Instead, our interest is more fundamental – to understand the properties and advantages of
thresholds in the context of distributed load balancing algorithms.

A simple but important advantage of user preferences based on thresholds is their locality. In the literature
various concurrent protocols for distributed load balancing are proposed. In general, these protocols operate
by activating users in parallel allowing them to improve their currently perceived performance. For example,
a user currently assigned to a resource may sample another resource according to a probability distribution
and migrate to the new resource with a certain probability. Whereas being based on local information in
principle, most of the protocols presented in the literature also rely on some amount of global information,
e.g. the set of underloaded resources or the current performance of the sampled resource. In contrast, the
user thresholds allow us to design algorithms, in which the actions performed by a user depend only on
information about the performance of the resource it is currently assigned to.
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1.3 Game Theory

In principle, our paper connects to related work in algorithmic game theory mentioned above and surveyed
in more detail below. We can formulate thresholds and users being satisfied or not as a simple game. In
this case, the set of resources is the set of strategies for all users. Each user is a player that has a 0/1 utility
function. The utility is 1 if and only if the resource has a total load of less than or equal to the threshold
and 0 otherwise. Then a stable state as defined above is obviously a Nash equilibrium of the game, as all
players obtain a maximum utility of 1. In this sense, the algorithms presented in this paper guarantee rapid
convergence to Nash equilibrium.

Nevertheless, we believe that the connection to game theory in this work is only loose. One might
argue that when users are allowed to act strategically, their inherent preferences are often much more
complicated than the resulting 0/1 utility functions. Rational acting upon more complicated preferences,
however, requires users to compare resources, and then non-local algorithms and protocols studied in the
literature seem more appropriate. Alternatively, a user with a threshold utility function for the load might
be interested in frequent migration to arrive at a favorable resource as quickly as possible – or he might be
interested in being reassigned a minimum number of times. Such natural strategic objectives have neither
been considered in this paper nor in any related work the authors are aware of. Finally, in later sections we
assume that in each round users report their thresholds to the resources, which then decide about evacuation
of users. In this process, users can obviously have a strategic incentive to misreport their thresholds in order
to avoid or promote migration. Such a repeated mechanism design scenario is beyond the scope of this paper
and represents an interesting avenue for future work.

In conclusion, our algorithms seem more appropriate in a non-strategic case, when we strive to design
interaction protocols to arrive at states that meet performance thresholds imposed by the users of the system.

1.4 Related Work

Various protocols for dynamic load balancing are proposed in the literature. These protocols usually model
the load balancing process as a weighted congestion game [21] with non-cooperative selfish users. In this
setting there are n weighted users that assign load to m resources or parallel links, and the latency equals
(an affine function of) the load of a resource. A stable state in this context is a Nash equilibrium, in which
no user unilaterally can decrease his latency by reassignment to a different resource. An overview about
existence, cost, and complexity of Nash equilibria in selfish load balancing is given by Vöcking [23].

While most work concentrates on centralized computation of Nash equilibria and worst-case sequential
best-response dynamics [13], Goldberg [17] considers a randomized sequential process for the case, in which
the latency equals the load of a link. Starting from an initial state randomly selected users move sequentially.
They migrate to a randomly selected resource if this improves their latency. The expected time to reach
a Nash equilibrium is pseudopolynomial. Sequential dynamics for scenarios with latency functions are also
considered in [11].

Concurrent protocols for load balancing have received some attention only recently. Even-Dar and Man-
sour [12] consider concurrent protocols in a setting where links have speeds. However, their protocols require
global knowledge in the sense that the users must be able to determine the set of underloaded and overloaded
links. The convergence time is doubly logarithmic in the number of users. In [4] Berenbrink et al consider a
distributed protocol for the case that the latency equals the load that does not rely on this knowledge. Their
bounds on the convergence time are also doubly logarithmic in the number of users but polynomial in the
number of links. In [5] the results are generalized to the case of weighted users. In this case, the convergence
time is only pseudopolynomial, i. e., polynomial in the number of users, links, and in the maximum weight.
More recently, the last two protocols have been generalized to load balancing over networks [6], for more
recent work on atomic network load balancing scenarios see [8, 9, 10]. Fotakis et al [16] consider a scenario
with latency functions for every resource. Their protocol involves local coordination among the users sharing
a resource. If the number of users asymptotically equals the number of resources, it yields fast convergence
to almost Nash equilibria. Intuitively, an almost Nash equilibrium is a state in which there are not too many
too expensive and too cheap resources. In [1], Ackermann et al propose an imitation protocol for general
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atomic congestion games. In this protocol each user samples another user and imitates its strategy if it
yields latency improvement. It yields rapid convergence to approximately balanced states, but also relies
on knowledge about the resources in the sampled strategy. Finally, the performance of no-regret learning
dynamics has been analyzed in atomic load balancing, however, these dynamics usually only converge in the
history of play and only to a stable distribution over states, such as mixed Nash or correlated equilibria [20].

A protocol similar to the one presented here is considered in [15] in the fluid limit, i.e., for the non-atomic
case with a finite demand of infinitely many, infinitesimally small users. In finite time this model only allows
convergence to a state that approximately satisfies all the user thresholds. There are numerous additional
results on such non-atomic [14] or atomic-splittable cases [3], where in the latter each of a finite number of
users can split his demand arbitrarily.

2 User-Independent Instances

We first consider the case that on each resource all users have the same threshold. Our fully distributed
load balancing algorithm proceeds as follows. Any user allocating a resource with the congestion xr that
exceeds the resource’s threshold Tr leaves this resource with a probability of α · xr−Tr

xr
and reassigns itself

to a resource chosen uniformly at random. The algorithm is given in pseudocode as Algorithm 1. It uses a
parameter α that depends on the thresholds and is defined below.

Algorithm 1 Threshold-Balancing Protocol

for all users i in parallel do
Let r(i) be the resource currently allocated by user i.
if xr(i) > Tr(i) then

With probability α · xr(i)−Tr(i)

xr(i)
migrate to a resource chosen uniformly at random.

end if
end for

We assume all users repeat the execution this algorithm infinitely often in a round-based fashion. To
analyze convergence properties of our protocol we introduce a potential function. This potential simply sums
up the load by which the thresholds are exceeded. More precisely, let

Φr(x) = max{0, xr − Tr}

and
Φ(x) =

∑
r∈R

Φr(x) .

For subsequent states x and x′, the potential difference is

∆Φ(x, x′) = Φ(x′)− Φ(x) .

The contribution of resource r to the potential difference is defined as

∆Φr(x, x
′) =

{
max{0, Tr − x′r} if xr > Tr
−(min{x′r, Tr} − xr) if xr ≤ Tr.

We call a resource overloaded if xr > Tr and underloaded if xr < Tr. Note that ∆Φr(x, x
′) 6= Φr(x

′) −
Φr(x). The first term accounts for users that leave an overloaded resource r′ and decrease its load to below
Tr′ . These users do not create a potential gain since they did not contribute to Φ in x. Thus, they are
counted as increase in potential. Intuitively, the second term counts the number of users migrating into
“holes”, thus reducing the potential if they come from an overloaded resource. Any user migrating to a
resource r and increasing its load to above Tr does not reduce the potential any further, so the gain is cut
off at Tr − xr. For an intuitive understanding of ∆r see Figure 1.
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Figure 1: Potential Difference. We artificially split the migration process in two stages. (a) Stage 1:
Evacuation of overloaded resources. Users counted in Φ (gray) that migrate remain counted. If more than
the excess users migrate (dark gray), these additional users get added to the potential. All migrating users
are temporarily counted in Φ. (b) Stage 2: Arrival on all resources. If users arrive and the load remains
below the threshold, these users are subtracted from the potential (dark gray). If more users arrive above
the threshold, they remain counted towards Φ (gray). ∆Φr is given by the number of dark gray users, which
are counted positive in (a) and negative in (b). In total, this yields ∆Φ.

To show that the expressions ∆Φr are useful in capturing progress in Φ, we define Ro(x) to be the set of
overloaded resources in x and Ro(x) = R−Ro(x). In addition, let

A = Ro(x) ∩Ro(x′)
B = Ro(x) ∩Ro(x′)
C = Ro(x) ∩Ro(x′)
D = Ro(x) ∩Ro(x′)

be the sets of resources that become or remain overloaded/non-overloaded in x and x′. As indicated in
Figure 1, we can intuitively imagine that users are stacked on resources. The change in potential ∆Φ(x, x′)
measures the change in the number of total users on all resources stacked above the height of the thresholds,
i.e.,

∆Φ(x, x′) =
∑
r∈A

(x′r − xr) +
∑
r∈B

(Tr − xr) +
∑
r∈C

(x′r − Tr) +
∑
r∈D

0 .

If the number of users stacked above the thresholds changes, then obviously the total number of users stacked
below the thresholds changes by the same amount. In particular, the change in the number of users stacked
below the thresholds is∑

r∈A
0 +

∑
r∈B

(x′r − Tr) +
∑
r∈C

(Tr − xr) +
∑
r∈D

(x′r − xr) = −∆Φ(x, x′) .

Note that

∆Φr(x, x
′) =


0 for r ∈ A,
Tr − x′r for r ∈ B,
xr − Tr for r ∈ C,
xr − x′r for r ∈ D,

and therefore ∑
r∈R

∆r(x, x
′) = ∆Φ(x, x′) .

Hence, in total the terms ∆Φr capture the improvement in Φ correctly.
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2.1 Above Average Thresholds

In this section we consider convergence times of our algorithm in instances, in which the thresholds Tr are
above average, i.e., in which Tr > n/m. We will show below that with a suitable choice of α the potential
decreases in expectation in every round. This allows us to bound the expected convergence time to a stable
state.

Whether or not the potential actually decreases in expectation depends on whether the terms ∆Φr
dominate for the underloaded or for the overloaded resources. In particular, if the current state is close
to balanced, it might become more likely that on an overloaded resource more than xr − Tr users leave
whereas only a small fraction of them actually chooses to migrate to an underloaded resource. In this case
the potential may even increase in expectation. To avoid this behavior, we need the damping factor α in
our protocol. The closer the thresholds Tr are to n/m, the more difficult it becomes to balance the system.
Hence, we define

εr = ε(Tr) =
mTr
n
− 1 and εmin = min

r∈R
{εr} .

Then, (1 + εmin) is the factor by which all the thresholds exceed the fractionally balanced assignment in
which every resource receives n/m users. With this parameter the main result of this section reads as follows.

Theorem 2.1. If α ≤ O(εmin) small enough, the system converges to a balanced state with xr ≤ Tr for all
r ∈ R in time

O
(

1

α εmin
· log(n)

)
.

For example, if Tr = (1 + ε)(n/m) for all r and α and ε are constants, then the convergence time is only
O(log n).

For the proof we monitor the potential change as long as the system is not balanced. In particular, we
consider the change between two rounds. Throughout, we fix an unbalanced state x and omit the argument
x whenever possible. We differentiate between overloaded and underloaded resources. The first lemma
bounds the number of significantly underloaded resources. This later serves to bound the probability that a
migrating user hits a “hole” and decreases the potential. We denote by k(x) = |{r : xr < Tr −Φ(x)/m}| the
number of significantly underloaded resources.

Lemma 2.2. If Φ > 0, it holds that k ≥ Ω(εminm).

Proof. We denote by Tmin = minr∈R{Tr} the smallest threshold and kmin = |{r : xr < Tmin−Φ/m}|. Note
that by definition we have k ≥ kmin and n ≥ (m− kmin) · (Tmin − Φ/m) + Φ. Solving for kmin yields

kmin ≥
m2 Tmin − nm
Tminm− Φ

.

Clearly, this expression is strictly increasing in Φ, so we may substitute Φ ≥ 0 to obtain

kmin ≥
m2 Tmin − nm

Tminm
=
mTmin − n

Tmin
.

Now, by choice of Tmin,

kmin ≥
(1 + εmin)n− n

(1 + εmin) · (n/m)
= m · εmin

1 + εmin
≥ εmin

2
m ,

if εmin ≤ 1.

The next lemma shows that on each of these resources there is a significant expected decrease of the
potential function.

Lemma 2.3. For any r ∈ R with xr ≤ Tr − Φ/m it holds that E [∆Φr] ≤ −Ω(αΦ/m).
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Proof. Let Xr be the random variable that denotes the number of users arriving at resource r. It holds that

E [Xr] =
∑

r′∈R:xr′>Tr′

xr′ · α ·
xr′ − Tr′
xr′

· 1

m
=

αΦ

m
.

Note that Xr counts the number of players migrating to resource r. It is a sum of independent Bernoulli
variables that indicate whether a player wants to migrate to resource r or not. Thus, we can use Chernoff
bounds to lower bound the probability that Xr is at least half its expectation by a constant. Note that if
Xr ≥ τ for 1 ≤ τ ≤ Tr − xr, this causes a strict decrease ∆Φr ≤ −τ .

We now bound the decrease in ∆ Φr. We have Tr−xr ≥ Φ/m by assumption and set τ = αΦ/2m. Then
P [Xr ≥ αΦ/2m] is a constant, and by the integrality of Xr, so is P [Xr ≥ dαΦ/2me]. Using our observations
above it follows that P [∆Φr ≤ −dαΦ/2me] is a constant as well. Note that αΦ/2m = 0 if and only if we
are in a balanced state. Hence, we can bound E [∆ Φr] by

E [∆Φr] ≤ −
⌈
αΦ

2m

⌉
· P
[
∆Φr ≤ −

⌈
αΦ

2m

⌉]
= −Ω(αΦ/m) .

The decrease of Φ shown in the last lemma is leveled off when too many users migrate away from an
overloaded resource. The following lemma bounds the expected impact of this effect.

Lemma 2.4. If α ≤ 1/(2 e), then for any r ∈ R with xr > Tr it holds that E [∆Φr] ≤ O(α2).

Proof. Note that ∆Φr is the number of users leaving resource r exceeding Φr. Since the number of users
leaving resource r is binomially distributed, we have

E [∆Φr] =

xr∑
l=1

l ·
(

xr
Φr + l

)
·
(
α · Φr

xr

)Φr+l

·
(

1− α · Φr
xr

)xr−(Φr+l)

≤
xr∑
l=1

l ·
(

exr
Φr + l

· α · Φr
xr

)Φr+l

=

xr∑
l=1

l ·
(

eαΦr
Φr + l

)Φr+l

≤
xr∑
l=1

l · (eα)
Φr+l

≤
∞∑
l=1

l · (eα)
Φr+l

= (eα)Φr

∞∑
l=1

l · (eα)
l

= (eα)Φr
eα

(eα− 1)2
= (eα)Φr+1 1

(eα− 1)2

≤ 4 (eα)Φr+1 ≤ 4 e2 α2

≤ 30α2 .

Assembling these insights, the next lemma bounds the expected decrease of Φ in one round of execution.

Lemma 2.5. If α = O(εmin) small enough, then E [∆Φ] ≤ −Ω(α εmin Φ).
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Proof. Summing up over all resources,

E [∆Φ] ≤
∑

r:xr<Tr−Φ/m

E [∆Φr] +
∑

r:Tr−Φ/m≤xr≤Tr

E [∆Φr] +
∑

r:xr>Tr

E [∆Φr]

≤ −k(x) · Ω
(
αΦ

m

)
+ 0 + |{r : xr > Tr}| · 30α2

≤ −εminm
2

· Ω
(
αΦ

m

)
+ |{r : xr > Tr}| · 30α2

≤ −Ω(α εmin Φ) + Φ · 30α2

≤ −Ω(α εmin Φ) ,

if α ≤ c εmin for some constant c small enough.

Proof. (of Theorem 2.1) Lemma 2.5 reveals that in expectation the potential decreases by a fraction of
O(αεmin) in every round. For the proof of Theorem 2.1 we have to bound the expected time until the
potential drops to 0. Such multiplicative drift results are somewhat folklore in randomized algorithms since
the early work of Hajek [19]. For a recent and elegant proof of the following result see, e.g., [7].

Lemma 2.6. Let Ω be a finite set of states, Ω∗ ⊆ Ω a set of desired states, and Φ : Ω→ N a function that
satisfies Φ(x) = 0 if and only if x ∈ Ω∗. Consider a sequence of random variables X0, X1, . . . that take values
in Ω. Denote by T ∗ = min{t ≥ 0 | Xt ∈ Ω∗} the time that a state from Ω∗ is reached for the first time. If

E [Φ(Xt+1) | Xt = x] ≤ (1− δ)Φ(x)

for all x ∈ Ω \ Ω∗ and some constant 0 < δ < 1, then

E [T ∗] ≤ 1 + ln Φmax

δ
,

where Φmax = maxx∈Ω Φ(x). Also, for any c > 0 we have that P [T ∗ > (ln Φmax + c lnn)/δ] ≤ n−c.

We can apply this lemma using δ ∈ O(αεmin) and Φmax ≤ n, and the theorem follows. In particular, we
have the same asymptotic time bound to achieve convergence in expectation and with high probability.

2.2 Feasible Thresholds

In contrast to the previous results this section treats instances, in which we do not require that thresholds
are above average Tr > n/m. Instead, we say that a set (Tr)r∈R of thresholds is feasible if

∑
r∈R Tr ≥ n.

The following Theorem 2.7 is the main result in this section. It bounds the convergence for every set of
feasible thresholds.

Theorem 2.7. If α = O(1/m) small enough, then the system converges to a balanced state with xr ≤ Tr
for all r ∈ R in time

O
(m
α

log (n)
)
.

The proof is very similar to the proof of Theorem 2.1. We again fix a state x and show that the expected
potential decrease is lower bounded by a fraction of α/m. The result then follows from known facts.

In our presentation we drop the argument x whenever possible. Due to the diversity of thresholds there
is no similar lower bound on the number of significantly underloaded resources as in Lemma 2.2. However,
we can derive a similar bound on the expected potential decrease on each underloaded resource.

Lemma 2.8. For any r ∈ R with xr ≤ T − Φ/m it holds that E [∆Φr] ≤ −Ω(αΦ/m).
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Proof. Again, let Xr be the random variable that denotes the number of users arriving on r. This time,

E [Xr] =
∑

r′∈R:xr′>T

xr′ · α ·
xr′ − Tr′
xr′

· 1

m
=
αΦ

m
.

The rest of the proof follows from concentration of measure arguments given in the proof of Lemma 2.3.

For the potential increase introduced at overloaded resources a generalized version of Lemma 2.4 holds.

Lemma 2.9. If α ≤ 1/(2 e), then for any r ∈ R with xr > Tr it holds that E [∆Φr] ≤ O(α2).

The proof is identical to the one given for Lemma 2.4. It follows from the fact that the migration
probability is bounded by αΦr/xr = α · (xr − Tr)/xr.

Finally, we assemble a bound on the expected potential decrease. However, as there is no bound on the
number of underloaded resources in terms of εr, the damping factor α is characterized by the number m of
resources. As a consequence, the proof of Theorem 2.7 follows for every set of feasible thresholds.

Lemma 2.10. If α = O(1/m) small enough, then E [∆Φ] ≤ −Ω(α · Φ/m).

Proof. Summing over all resources we obtain

E [∆Φ] ≤
∑

r:xr<Tr−Φ/m

E [∆Φr] +
∑

r:Tr−Φ/m≤xr≤Tr

E [∆Φr] +
∑

r:xr>Tr

E [∆Φr]

≤ −1 · Ω
(
αΦ

m

)
+ 0 + |{r : xr > T}| · 30α2

≤ −Ω

(
α · Φ

m

)
+ Φ · 30α2

≤ −Ω

(
α · Φ

m

)
.

3 User-Specific Instances

When thresholds are user-specific, it is easy to construct an instance where the algorithm presented in the
preceding section requires a convergence time that is polynomial in n. We can construct a situation in
which there is only one unsatisfied user assigned to a particular resource which holds k users in total. In
the user-independent setting, if one user is unsatisfied, so are all the others on its resource. Consequently,
Algorithm 1 will remove each of the k users with a probability of at least α/k, so in expectation at least α
in total. In the user-specific setting, however, if only one user is unsatisfied and its probability to move is
only 1/k, it will take expected time Ω(k) to leave the resource.

Rapid convergence cannot be achieved without knowledge about the thresholds of users sharing the same
resource: Increasing the migration probability for unsatisfied users is possible only if we are sure that the
others are satisfied, otherwise we risk increasing the potential by overshooting effects. Thus, we move control
to the resources, which concurrently run the following algorithm. First, it sorts the users on resource r in
decreasing order of threshold. Then it considers the set of users whose level within resource r exceeds their
threshold. Note that this will be a contiguous section at the top of the ordering since their level within the
resource is increasing and their threshold is decreasing. This set of users is removed from the resource and
each of them is reassigned to a resource chosen uniformly at random. The algorithm is given in pseudocode
as Algorithm 2.
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Algorithm 2 Kick-The-Complainers

for all resources r in parallel do
Sort users on resource r in decreasing order of T ir .
Let Ur = {i : T ir > i} denote the set of excess users.
Remove Ur from r and reassign them uniformly at random.

end for

We first concentrate on resource-uniform instances. It is straightforward to observe that for an arbitrary
feasible set of thresholds T i, which allows a balanced assignment, Algorithm 2 cannot guarantee convergence1.
Hence, throughout the section we assume that all thresholds are above average, i.e. that T i > n/m for all

i ∈ N . In addition, we define εi = ε(T i) = mT i

n − 1 as above, and let εmin = mini{εi}. For our convergence
proof, we use the number excess users Ur as defined in Algorithm 2 as a potential. Let nu =

∑
|Ur|.

Lemma 3.1. After removing Ur from r (but before reassigning any users) all remaining users are satisfied.

Proof. Consider the topmost user after removing Ur. Its level now equals the load xr of the resource and
the user was not contained in Ur. So Ti ≥ xr, and the user is satisfied. By our ordering the remaining users
have an even larger threshold, so they are also satisfied.

Theorem 3.2. The system using Algorithm 2 converges to a stable state in time

O
(

1

εmin
log(n)

)
.

Proof. Lemma 3.1 shows that after removing the sets Ur of users from their resources, the potential is
temporarily reduced to 0. We now reassign nu users to resources sequentially. Consider a user i assigned to
resource r. There are two cases:

1. When i is assigned to r with xr < Tmin. Then, after adding user i, we still have |Ur| = 0.

2. For any other resource r, the user may contribute to Ur in the next round or may displace other users
in the ordering. In any case, the additional contribution to Ur in the subsequent round caused by this
insertion can be no more than 1.

Users falling into case 2 do not change the potential, they contribute in the preceding and in the subsequent
round. Users falling into case 1 reduce the potential nu by 1.

As in the user-independent setting, the fraction of resources with load at most Tmin − nu/m is again at
least Ω(εminm) (Lemma 2.2), the probability for one of the nu reassigned users to fall into case 1 is at least
εmin ·m/m, and the expected potential decrease is −Ω(εmin nu). The theorem follows.

Note that we can bound the time independently for each single user when it stops being reassigned. Thus,
more tolerant users “stabilize” at an earlier point in time.

Corollary 3.3. Fix ε̃ > 0 and consider the set of users with εi ≥ ε̃. Let τ denote the round at which any of
these users is moved for the last time. Then,

τ = O
(

1

ε̃
log(n)

)
.

1Consider two resources r1 and r2 and three users i1, i2, i3. Two users have T i1 = T i2 = 2, one user has T i3 = 1. If i1 and
i2 are on different resources, the algorithm will reassign i3 infinitely. If, however, i1 and i2 are both located on one resource, a
balanced state evolves.
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Proof. The decision about the migration of a user with εi ≥ ε̃ depends only on the inclusion in Ur. Whether
or not a user with εi ≥ ε̃ belongs to Ur is independent of the users with εi < ε̃. Thus, to bound the
convergence time for user i we can disregard all users with smaller εi from the system.

Finally, note that Theorem 3.2 can be generalized to hold for the case of resource-specific thresholds
that are above average with T ir > n/m, for all i ∈ N and r ∈ R. In this case we define εmin =
mini∈N ,r∈R(mT ir/n)− 1.

Corollary 3.4. For user-specific and resource-specific instances the system using Algorithm 2 converges to
a stable state in time

O
(

1

εmin
log(n)

)
.

4 Unknown Number of Users

In previous sections we were mainly concerned with a scenario, in which thresholds are intrinsic to users. In
this section we consider the problem of explicitly designing an acceptance threshold of the users to provide
fast convergence. Clearly, our design can be guided by the insights from the previous sections, which yields
fast convergence for T sufficiently large. However, such a choice requires to know the total number of users
in the system. In a distributed setting this value might not be readily available, but it can be estimated
by performing an exponential search technique. While such an approach can be seen as a standard in the
theory of algorithms, we describe it here (Algorithm 3) for completeness.

Note that in our algorithm we design thresholds to be uniform. One can certainly think of reasons as to
why it might be profitable or required to design thresholds in a non-uniform (e.g., user- or resource-specific)
way, but this issue is left for future work.

Algorithm 3 Exponential search

1: for all users i in parallel do
2: set ñ← 1
3: set t← 1
4: repeat
5: Execute Algorithm 1 for c · 1

ε α · log ñ rounds
6: t← t+ 1
7: ñ← (1 + ε)t

8: T ← (1 + ε) ñm
9: until indefinitely

10: end for

Theorem 4.1. Let τ denote the time at which Algorithm 3 reaches a stable state for the first time and let
Tτ denote the value of T at this point of time. Then,

E [τ ] = O
(

1

ε2 α
log2 n

)
and E [Tτ ] =

n

m
· (1 +O (ε)).

Proof. Denote by t the first round, in which we have ñ ≥ n and note that t = O
(
log1+ε n

)
= O (log n/ε). By

Theorem 2.1 the expected convergence time of Algorithm 1 is then O
(

1
αε log n

)
= O

(
1
αε log ñ

)
. By Markov’s

inequality the probability to fail to converge after c · 1
ε α · log ñ rounds can be at most a constant p if c is a

constant chosen large enough. Since this also holds for any subsequent round,

E [τ ] = t · c · 1

ε α
· log n+ c · 1

ε α
·
∞∑
i=1

pi · log((1 + ε)in) .
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Substituting the bound for t and using that the sum is bounded by O (log n) yields the claimed bound on
E [τ ]. Similarly, for E [Tτ ] we have

E [Tτ ] = Tt ·
∞∑

0=1

pi · (1− p) · (1 + ε)i = Tt ·
1− p

1− p− pε
,

which proves the bound on E [Tτ ].

5 Conclusions

In this paper we have studied a load balancing model based on QoS demands by users. In our model
users formulate minimum performance thresholds that must be satisfied by the system. We have presented
distributed load balancing algorithms that guarantee rapid convergence to balanced states when executed
locally by each user. The advantage of this approach is that the threshold formulation allows to significantly
strengthen the locality constraint by using only information about the currently allocated resource.

Naturally, a variety of open problems remain. It is not clear whether the bounds presented in this
paper are optimal. For instance, it might be the case that a different, more elaborate protocol achieves
even doubly logarithmic convergence time. This was obtained, e.g., in [4] for a protocol that steers the
migration of each user with information about several resources. Improved convergence times can only be
obtained using concurrent or synchronized dynamics, as non-synchronized or sequential migration requires
at least n rounds for convergence in the worst case. The main challenge in acceleration of convergence lies
in avoiding oscillation effects. Furthermore, there are a variety of different aspects, especially on modeling
various strategic incentives in the convergence process, which have not been addressed appropriately in
existing work on distributed load balancing.
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