
Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Complexity I

Martin Hoefer

(based on material by Walter Unger)

Some problems may not be solved in polynomial time.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example (1): Rubik’s Dodecahedron

Challenge

Solve the dodecahedron.

This problem can be solved by
computer: Try all possible
sequences of moves.

But:
Tons of possibilities
Huge computation time

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example (2): Rush Hour

User:Welt-der-Form/Wikimedia Commons/CC-BY-SA-3.0

Challenge

Get the red car out of the traffic
jam.

This problem can be solved by
computer: Try all possible
sequences of moves.

But:
Tons of possibilities
Huge computation time

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example (3): Traveling Salesman

Challenge

Find a short round-trip through the
largest German cities.

The depicted route is the shortest
one (among 43.589.145.600 routes).

The problem can be solved by
checking all possible cases (slow and
in-efficient). Nobody knows a fast
algorithm for this problem . . .

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Easy versus Hard Problems

Some algorithmic problems are easy to solve, within micro-seconds, even for large inputs
(for instance: minimum spanning tree; shortest path; network flow)

Other algorithmic problems are hard to solve, and take hours or days or weeks of
computation time, even for small inputs

Central question

How do we tell the hard problems from the easy ones?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Basic Concepts (1)

Discrete problem:
Optimization problem (with goal min/max)
Decision problem (with answer YES/NO)

Example: Optimization problem

Instance: a graph G = (V ;E)
Goal: find a clique of maximum size in G

Example: Decision problem

Instance: a graph G = (V ;E); a bound k
Question: does G contain a clique of size (at least) k?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Basic Concepts (2)

Instance:
specification of problem data

Example: Instance of decision version of clique

V = f1; 2; 3; 4; 5g;
E = f[1; 2]; [1; 3]; [4; 5]; [2; 3]; [3; 5]g;
k = 3

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Basic Concepts (3)

Problem size:
length (number of symbols) of reasonable encoding of instance

Example

Graph: adjacency list; adjacency matrix

Set: list of elements; bit vector

Number: decimal; binary; hex; unary

We do not really care whether
an n-vertex graph is encoded with 4n2 + 3n or with 7n2 + 2 symbols.

Recall: big-Oh notation; big-Omega; big-Theta
4n2 + 3n 2 Θ(n2) and 7n2 + 2 2 Θ(n2)
4n2 + 3n 2 O(n2); 4n2 + 3n 2 O(n3); 7n2 + 2 2 Ω(n log n)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Basic Concepts (4)

Algorithm:
an unambiguous recipe for solving a discrete problem

Our definition in this course: C++ program (Church-Turing thesis)

Time complexity of an algorithm:
number of elementary steps made by C++ program

The time complexity is measured as a function of the instance size:
TA(I) = number of steps that algorithm A makes on instance I
T (n) = maximum number of steps that algorithm A makes
on any instance I of size O(n)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (1)

Polynomial growth rate:
O(poly(n)) for some polynomial poly

Examples: O(n); O(n log n); O(n3); O(n100)

Exponential growth rate:
everything that grows faster than polynomial

Examples: 2
p

n; 2n; 3n; n!; 22n
; nn

Intuition:
Polynomial = desirable, good, harmless, fast, short, small
Exponential = undesirable, bad, evil, slow, wasteful, horrible

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (2)

Question

What’s the number of subsets of an n-element set?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

2n

Question

What’s the number of permutations of n elements?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

Stirling’s formula: n! =
p

2�n � (n=e)n
Ergo: n! 2 O(nn)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (2)

Question

What’s the number of subsets of an n-element set?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

2n

Question

What’s the number of permutations of n elements?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

Stirling’s formula: n! =
p

2�n � (n=e)n
Ergo: n! 2 O(nn)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (2)

Question

What’s the number of subsets of an n-element set?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

2n

Question

What’s the number of permutations of n elements?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

Stirling’s formula: n! =
p

2�n � (n=e)n
Ergo: n! 2 O(nn)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (2)

Question

What’s the number of subsets of an n-element set?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

2n

Question

What’s the number of permutations of n elements?
Does this number grow polynomially with n?
Does this number grow exponentially with n?

Stirling’s formula: n! =
p

2�n � (n=e)n
Ergo: n! 2 O(nn)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?

(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?

(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial versus Exponential (3)

Question

What’s the number of 2-element subsets of an n-element set?(n
2

)
= 1

2n(n � 1) 2 O(n2)

Question

What’s the number of 3-element subsets of an n-element set?(n
3

)
= 1

6n(n � 1)(n � 2) 2 O(n3)

Question

What’s the number of k-element subsets of an n-element set?

The binomial coefficient
(n
k

)
= n (n�1) (n�2)���(n�k+1)

k! 2 O(nk)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Complexity Class P

Definition

A decision problem X lies in the complexity class P,
if X is solved by a C++ program with polynomial time complexity

P stands for Polynomial Time

Example

The following problems are in P:

Computing the median of a list of integers

Computing the greatest common divisor of two integers

Checking whether a given graph is planar

Computing a minimum spanning tree for an edge-weighted graph

Solving a linear program

Testing whether a given integer is a prime

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Complexity Class NP

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

Certificate: short piece of text; short proof; supporting evidence
NP stands for Non-deterministic Polynomial

Example

A certificate for the decision version of clique:
Subset C � V of size k that induces a clique

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Complexity Class NP

Definition

A decision problem X lies in the complexity class NP,
if the YES-instances of X possess certificates of polynomial length
that can be verified in polynomial time

Certificate: short piece of text; short proof; supporting evidence
NP stands for Non-deterministic Polynomial

Example

A certificate for the decision version of clique:
Subset C � V of size k that induces a clique

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise: Satisfiability

Satisfiability (SAT)

Instance:
A logical formula Φ in CNF over logical variable set X = fx1; : : : ; xng

Question: Does there exist a truth setting for X that satisfies Φ?

Examples

'1 = (x _ y _ z) ^ (:x _ :y _ :z)
'1 = (x + y + z) (x + y + z)

'2 = (x _ y) ^ (:x _ y) ^ (x _ :y) ^ (:x _ :y)
'2 = (x + y) (x + y) (x + y) (x + y)

Question

What’s a good NP-certificate for SAT?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise: Independent Set / Vertex Cover

Problem: Independent Set (INDEP-SET)

Instance: An undirected graph G = (V ;E) an integer k

Question: Does G contain an independent set of size � k?

Problem: Vertex Cover (VC)

Instance: An undirected graph G = (V ;E) an integer k

Question: Does G contain a vertex cover of size � k?

Independent set S � V : does not span any edges
Vertex cover S � V : touches all edges in the graph

Question

What’s a good NP-certificate for INDEP-SET / VC?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise: Hamiltonian Cycle / TSP

Hamiltonian cycle (Ham-Cycle)

Instance: An undirected graph G = (V ;E)
Question: Does G contain a Hamiltonian cycle?

(a simple cycle that visits every vertex exactly once)

Travelling Salesman Problem (TSP)

Instance: Cities 1; : : : ; n; distances d(i ; j); a bound B
Question: Does there exist a roundtrip of length at most B?

Question

What’s a good NP-certificate for Ham-Cycle?
What’s a good NP-certificate for TSP?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise: Exact Cover

Exact cover (Ex-Cover)

Instance: A ground set X ; subsets S1; : : : ;Sm of X

Question: Do there exist some subsets Si that form a partition of X?

Partition: every element of X lies in exactly one part

Question

What’s a good NP-certificate for Ex-Cover?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise: Subset-Sum

Subset-Sum

Instance: Positive integers a1; : : : ; an; a bound b

Question: Does there exist an index set I � f1; : : : ; ng with
∑

i2I ai = b?

Question

What’s a good NP-certificate for Subset-Sum?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

What have we seen so far?

Complexity class P

The class P contains all decision problems
that can be solved efficiently on a computer.

Intuitively: P contains the problems that we understand well and that we can settle within a
reasonable amount of computation time

Complexity class NP

The class NP contains all decision problems
for which there exists a short solution,
and whose short solution can efficiently be verified
(under the assumption that this short solution is shown to us)

Intuitively: NP contains more or less all natural problems that ask us to specify a concrete
solution

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

What have we seen so far?

Complexity class P

The class P contains all decision problems
that can be solved efficiently on a computer.

Intuitively: P contains the problems that we understand well and that we can settle within a
reasonable amount of computation time

Complexity class NP

The class NP contains all decision problems
for which there exists a short solution,
and whose short solution can efficiently be verified
(under the assumption that this short solution is shown to us)

Intuitively: NP contains more or less all natural problems that ask us to specify a concrete
solution

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

The big open question of computer science

P=NP ?

If the solution to some problem is easy to check,
does this mean that the solution is also easy to detect?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Consequences

In case P=NP:

Many difficult problems from economics and industry can be solved quickly

Perfect time tables, production plans, transportation plans, etc

Mathematics reaches a new level: If a theorem allows a short proof, then we are also
able to detect this proof

Modern cryptography collapses

In case P6=NP:

Difficult problems from economics and industry can only be attacked with lots of
computation time and expert knowledge

We should not expect perfect solutions for hard problems with lots of data

Mathematics and cryptography will not change much

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Consequences

In case P=NP:

Many difficult problems from economics and industry can be solved quickly

Perfect time tables, production plans, transportation plans, etc

Mathematics reaches a new level: If a theorem allows a short proof, then we are also
able to detect this proof

Modern cryptography collapses

In case P6=NP:

Difficult problems from economics and industry can only be attacked with lots of
computation time and expert knowledge

We should not expect perfect solutions for hard problems with lots of data

Mathematics and cryptography will not change much

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

One Million Dollar

In the year 2000, the Clay Mathematics Institute (CMI) has offered one million dollar prize
money for the solution of each of the following seven problems:

P versus NP problem

Hodge conjecture

Poincaré conjecture X (Grigori Perelman, 2006)

Riemann hypothesis

Yang-Mills existence and mass gap

Navier-Stokes existence and smoothness

Birch and Swinnerton-Dyer conjecture

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Finding solution vs Deciding existence of solution

Some arbitrary decision problem in NP

Instance: A discrete object X .

Question: Does this object X possess a solution Y ?

Dilemma:
The decision problem only formulates the question,
whether such a solution Y does exist
But in real life we would also like to determine the solution object Y precisely, and to
work with it

Way out:
A fast algorithm for the decision problem often yields (through repeated applications) a
fast algorithm for the computation of an explicit solution object

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: SAT (1)

Problem: Satisfiability (SAT)

Instance: Formula Φ in CNF over X = fx1; : : : ; xng
Question: Does there exist a truth setting for X that satisfies Φ?

Suppose that in ' some variable is fixed as x := 1.
Then all clauses with the literal x are satisfied by this,
and in all clauses with the literal x̄ this literal simply disappears.

We derive a shorter CNF-formula '[x = 1].

In an analogous way '[x = 0] results by fixing x := 0.

Example

For ' = (x _ y _ z) ^ (:x _ :y _ :z) ^ (:y _ z) ^ (u _ z)

we have '[y = 1] = (:x _ :z) ^ (z) ^ (u _ z)

and '[z = 0] = (x _ y) ^ (:y) ^ (u)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: SAT (2)

We consider SAT instances with n variables and m clauses.

Theorem

Suppose the algorithm A decides SAT instances in T (n;m) time. Then there exists an
algorithm B, that for satisfiable SAT instances

constructs in n � T (n;m) time a satisfying truth setting.

Proof:

We fix step by step the truth values of x1; x2; : : : ; xn.

FOR i = 1; 2; : : : ; n DO
If '[xi = 1] is satisfiable, then set xi := 1 and ' := '[xi = 1]
Else set xi := 0 and ' := '[xi = 0]

At the end, the fixed truth values x1; x2; : : : ; xn yield a satisfying truth setting for '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: SAT (2)

We consider SAT instances with n variables and m clauses.

Theorem

Suppose the algorithm A decides SAT instances in T (n;m) time. Then there exists an
algorithm B, that for satisfiable SAT instances

constructs in n � T (n;m) time a satisfying truth setting.

Proof:

We fix step by step the truth values of x1; x2; : : : ; xn.

FOR i = 1; 2; : : : ; n DO
If '[xi = 1] is satisfiable, then set xi := 1 and ' := '[xi = 1]
Else set xi := 0 and ' := '[xi = 0]

At the end, the fixed truth values x1; x2; : : : ; xn yield a satisfying truth setting for '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: CLIQUE

Problem: CLIQUE

Instance: An undirected graph G = (V ;E); an integer k

Question: Does G contain a clique on � k vertices?

If we remove from G a vertex v and all edges that are incident to v , we get a smaller
graph G � v

If G � v contains a k-clique, vertex v is irrelevant

If G � v does not contain a k-clique, then the neighborhood N[v] of vertex v in G � v
contains a (k � 1)-clique

Theorem

Suppose an algorithm A decides the CLIQUE problem in T (n) time.
Then there exists an algorithm B, that for YES-instances

constructs in n � T (n) time a k-clique.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: CLIQUE

Problem: CLIQUE

Instance: An undirected graph G = (V ;E); an integer k

Question: Does G contain a clique on � k vertices?

If we remove from G a vertex v and all edges that are incident to v , we get a smaller
graph G � v

If G � v contains a k-clique, vertex v is irrelevant

If G � v does not contain a k-clique, then the neighborhood N[v] of vertex v in G � v
contains a (k � 1)-clique

Theorem

Suppose an algorithm A decides the CLIQUE problem in T (n) time.
Then there exists an algorithm B, that for YES-instances

constructs in n � T (n) time a k-clique.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Hamiltonian Cycle

Problem: Hamiltonian cycle (Ham-Cycle)

Instance: An undirected graph G = (V ;E)

Question: Does G contain a Hamiltonian cycle?

If we remove from G some edge e, we get a smaller graph G � e

If G � e has a Hamiltonian cycle, edge e is irrelevant

If G � e does not have a Hamiltonian cycle, e is not irrelevant

Theorem

Suppose an algorithm A decides the Ham-Cycle problem in T (n) time.
Then there exists an algorithm B, that for YES-instances

constructs in jE j � T (n) time a Hamiltonian cycle.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Optimization Problems

Definition: Optimization problem

The input of an optimization problem specifies (usually: implicitly) a set F of feasible
solutions together with an objective function f : F ! N (that measures costs, weights,
profits).

The goal is to compute an optimal solution in F .
A minimization problem aims at minimizing costs, and
a maximization problem aims at maximizing profits.

Dilemma:
The classes P and NP only consist of decision problems
But: Many real-world problems are optimization problems

Way out:
We re-formulate the optimization problem into a
“very similar” decision problem

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Optimization Problems

Definition: Optimization problem

The input of an optimization problem specifies (usually: implicitly) a set F of feasible
solutions together with an objective function f : F ! N (that measures costs, weights,
profits).

The goal is to compute an optimal solution in F .
A minimization problem aims at minimizing costs, and
a maximization problem aims at maximizing profits.

Dilemma:
The classes P and NP only consist of decision problems
But: Many real-world problems are optimization problems

Way out:
We re-formulate the optimization problem into a
“very similar” decision problem

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (1)

An instance of the Traveling Salesman Problem consists of cities 1; : : : ; n together with
all distances d(i ; j) for 1 � i 6= j � n

The goal is to find a shortest round-trip (Hamilton cycle; tour) through all the cities

Optimization version of TSP

Instance: Integers d(i ; j) for 1 � i 6= j � n

Feasible solution: Permutation � of 1; : : : ; n

Goal: Minimize d(�) :=
n�1∑
i=1

d(�(i); �(i + 1)) + d(�(n); �(1))

Decision version of TSP

The instance additionally contains a bound B

Question: Does there exist a feasible solution of length d(�) � B?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (1)

An instance of the Traveling Salesman Problem consists of cities 1; : : : ; n together with
all distances d(i ; j) for 1 � i 6= j � n

The goal is to find a shortest round-trip (Hamilton cycle; tour) through all the cities

Optimization version of TSP

Instance: Integers d(i ; j) for 1 � i 6= j � n

Feasible solution: Permutation � of 1; : : : ; n

Goal: Minimize d(�) :=
n�1∑
i=1

d(�(i); �(i + 1)) + d(�(n); �(1))

Decision version of TSP

The instance additionally contains a bound B

Question: Does there exist a feasible solution of length d(�) � B?

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Optimization versus Decision

For an optimization problem with a set F of feasible solutions and a weight function
f : F ! N we define the corresponding decision problem:

Instance: As in the optimization problem, plus a bound B 2 N

Question: Does there exist a feasible solution x 2 F
with f (x) � B (for maximization problems) respectively
with f (x) � B (for minimization problems)?

With the help of an algorithm for the optimization problem,
we can easily solve the corresponding decision problem. (How?)
With the help of an algorithm for the decision problem,
we can often solve the corresponding optimization problem.

We will illustrate this for the Travelling Salesman Problem.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Optimization versus Decision

For an optimization problem with a set F of feasible solutions and a weight function
f : F ! N we define the corresponding decision problem:

Instance: As in the optimization problem, plus a bound B 2 N

Question: Does there exist a feasible solution x 2 F
with f (x) � B (for maximization problems) respectively
with f (x) � B (for minimization problems)?

With the help of an algorithm for the optimization problem,
we can easily solve the corresponding decision problem. (How?)

With the help of an algorithm for the decision problem,
we can often solve the corresponding optimization problem.

We will illustrate this for the Travelling Salesman Problem.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Optimization versus Decision

For an optimization problem with a set F of feasible solutions and a weight function
f : F ! N we define the corresponding decision problem:

Instance: As in the optimization problem, plus a bound B 2 N

Question: Does there exist a feasible solution x 2 F
with f (x) � B (for maximization problems) respectively
with f (x) � B (for minimization problems)?

With the help of an algorithm for the optimization problem,
we can easily solve the corresponding decision problem. (How?)
With the help of an algorithm for the decision problem,
we can often solve the corresponding optimization problem.

We will illustrate this for the Travelling Salesman Problem.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (2)

Instance: Integers d(i ; j) for 1 � i 6= j � n and B
Feasible: Permutation � of 1; : : : ; n

Optimization: Find minimal tour length d(�)
Decision: Does there exist a permutation � with d(�) � B?

Theorem

If the decision problem of TSP is solvable in polynomial time, then also the optimization
problem of TSP is solvable in polynomial time.

Proof idea:
With the help of a polynomial time algorithm A for the decision problem we will construct a
polynomial time algorithm B for computing the optimal objective value for the optimization
problem.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (2)

Instance: Integers d(i ; j) for 1 � i 6= j � n and B
Feasible: Permutation � of 1; : : : ; n

Optimization: Find minimal tour length d(�)
Decision: Does there exist a permutation � with d(�) � B?

Theorem

If the decision problem of TSP is solvable in polynomial time, then also the optimization
problem of TSP is solvable in polynomial time.

Proof idea:
With the help of a polynomial time algorithm A for the decision problem we will construct a
polynomial time algorithm B for computing the optimal objective value for the optimization
problem.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (3)

Algorithm B

We perform a binary search (bisection search) with the following parameters:

The minimal length is 0.

The maximal length is L :=

n∑
i=1

n∑
j=i+1

d(i ; j).

We find the optimal objective value by binary search over the range f0; : : : ;Lg.
In each iteration, we apply the polynomial time algorithm A (for the decision problem) to
tell us in which half we have to search on.

The number of iterations in the binary search is dlog(L + 1)e.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (4)

Investigation of the instance size:

The coding size of a 2 N is �(a) := dlog(a + 1)e.
The function � is subadditive:
For all a; b 2 N we have �(a + b) � �(a) + �(b).

The instance size jI j of the Traveling Salesman Problem is at least

n∑
i=1

n∑
j=i+1

�(d(i ; j)) � �

 n∑
i=1

n∑
j=i+1

d(i ; j)

= �(L) = dlog(L + 1)e

Algorithm B essentially consists of dlog(L + 1)e � jI j calls of the polynomial time
Algorithm A.

Hence the overall running time of algorithm B is polynomially bounded in the instance
size.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (4)

Investigation of the instance size:

The coding size of a 2 N is �(a) := dlog(a + 1)e.
The function � is subadditive:
For all a; b 2 N we have �(a + b) � �(a) + �(b).

The instance size jI j of the Traveling Salesman Problem is at least

n∑
i=1

n∑
j=i+1

�(d(i ; j)) � �

 n∑
i=1

n∑
j=i+1

d(i ; j)

= �(L) = dlog(L + 1)e

Algorithm B essentially consists of dlog(L + 1)e � jI j calls of the polynomial time
Algorithm A.

Hence the overall running time of algorithm B is polynomially bounded in the instance
size.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Example: Traveling Salesman (4)

Investigation of the instance size:

The coding size of a 2 N is �(a) := dlog(a + 1)e.
The function � is subadditive:
For all a; b 2 N we have �(a + b) � �(a) + �(b).

The instance size jI j of the Traveling Salesman Problem is at least

n∑
i=1

n∑
j=i+1

�(d(i ; j)) � �

 n∑
i=1

n∑
j=i+1

d(i ; j)

= �(L) = dlog(L + 1)e

Algorithm B essentially consists of dlog(L + 1)e � jI j calls of the polynomial time
Algorithm A.

Hence the overall running time of algorithm B is polynomially bounded in the instance
size.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (1)

Definition

Let L1 and L2 be languages (problems) over Σ1 respectively Σ2.
Then L1 is polynomially reducible to L2 (with the notation L1 �p L2),

if there exists a polynomially computable function f : Σ�
1 ! Σ�

2
so that for all x 2 Σ�

1 we have: x 2 L1 , f (x) 2 L2.

f0; 1g�f0; 1g�

L2
L1

f

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2a)

Theorem

If L1 �p L2 and if L2 2 P, then L1 2 P.

Proof

The reduction f has polynomial run time p(�)
Algorithm A2 decides L2 in polynomial time q(�)

We construct a new algorithm A1 that decides L1:

Step 1: Compute f (x)
Step 2: Simulate algorithm A2 with input f (x)
Step 3: Accept x , if and only if A2 accepts f (x)

Step 1 has run time p(jx j) and
Step 2 has run time q(jf (x)j) � q(p(jx j) + jx j)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2a)

Theorem

If L1 �p L2 and if L2 2 P, then L1 2 P.

Proof

The reduction f has polynomial run time p(�)
Algorithm A2 decides L2 in polynomial time q(�)

We construct a new algorithm A1 that decides L1:

Step 1: Compute f (x)
Step 2: Simulate algorithm A2 with input f (x)
Step 3: Accept x , if and only if A2 accepts f (x)

Step 1 has run time p(jx j) and
Step 2 has run time q(jf (x)j) � q(p(jx j) + jx j)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2a)

Theorem

If L1 �p L2 and if L2 2 P, then L1 2 P.

Proof

The reduction f has polynomial run time p(�)
Algorithm A2 decides L2 in polynomial time q(�)

We construct a new algorithm A1 that decides L1:

Step 1: Compute f (x)
Step 2: Simulate algorithm A2 with input f (x)
Step 3: Accept x , if and only if A2 accepts f (x)

Step 1 has run time p(jx j) and
Step 2 has run time q(jf (x)j) � q(p(jx j) + jx j)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2a)

Theorem

If L1 �p L2 and if L2 2 P, then L1 2 P.

Proof

The reduction f has polynomial run time p(�)
Algorithm A2 decides L2 in polynomial time q(�)

We construct a new algorithm A1 that decides L1:

Step 1: Compute f (x)
Step 2: Simulate algorithm A2 with input f (x)
Step 3: Accept x , if and only if A2 accepts f (x)

Step 1 has run time p(jx j) and
Step 2 has run time q(jf (x)j) � q(p(jx j) + jx j)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2b)

Algorithm A1 for L1

x
Reduction

Algorithm
A2 for L2

x 2 L1f (x) f (x)2L2

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (2c)

On the last two slides we have shown:

Theorem

If L1 �p L2 and if L2 2 P, then L1 2 P.

Intuition for L1 �p L2:
If L2 is easy, then also L1 is easy
If L1 is difficult, then also L2 is difficult

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Polynomial-Time Reductions (3)

Lemma

Reducibility is a transitive relation:
L1 �p L2 and L2 �p L3 implies L1 �p L3

Proof: by putting the two tranformations into series

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT

Problem: COLORING

Instance: An undirected graph G = (V ;E); a number k 2 N

Question: Does there exist a coloring c : V ! f1; : : : ; kg of the vertices
with k colors, so that adjacent vertices receive distinct colors?
In other words, we would like to have 8e = fu; vg 2 E : c(u) 6= c(v)

Problem: Satisfiability (SAT)

Instance: A logical formula Φ in CNF over X = fx1; : : : ; xng
Question: Does there exist a truth setting for X that satisfies Φ?

Theorem

COLORING �p SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: The Reduction

The Boolean variables

For every vertex v 2 V and for every color i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .

The clauses

For every vertex v 2 V
we introduce the clause (x1

v + x2
v + : : :+ xk

v)

For every edge fu; vg 2 E and for every color i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = k jV j
Number of clauses = jV j+ k jE j
Total size of formula = k jV j+ 2k jE j 2 O(k jV j2)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: The Reduction

The Boolean variables

For every vertex v 2 V and for every color i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .

The clauses

For every vertex v 2 V
we introduce the clause (x1

v + x2
v + : : :+ xk

v)

For every edge fu; vg 2 E and for every color i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = k jV j
Number of clauses = jV j+ k jE j
Total size of formula = k jV j+ 2k jE j 2 O(k jV j2)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: The Reduction

The Boolean variables

For every vertex v 2 V and for every color i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .

The clauses

For every vertex v 2 V
we introduce the clause (x1

v + x2
v + : : :+ xk

v)

For every edge fu; vg 2 E and for every color i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = k jV j
Number of clauses = jV j+ k jE j
Total size of formula = k jV j+ 2k jE j 2 O(k jV j2)

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (1)

Graph G has k-coloring) formula ' is satisfiable

Let c be a k-coloring of G

For every vertex v 2 V with c(v) = i we set x i
v = 1.

All other variables are set to 0.

For every vertex v 2 V the clause (x1
v + x2

v + : : :+ xk
v) is satisfied

For fu; vg 2 E and i 2 f1; : : : ; kg the clause (x̄ i
u + x̄ i

v) is satisfied
(Otherwise both vertices u and v have the same color i .)

Hence: This truth assignment satisfies formula '

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Correctness (2)

Formula ' is satisfiable) graph G has k-coloring

Consider a satisfying truth assignment for '

Because of clause (x1
v + x2

v + : : :+ xk
v), for every vertex v there is at least one color i

with x i
v = 1

For every vertex we pick one such color

We claim: c(u) 6= c(v) holds for every edge fu; vg 2 E

Proof: If c(u) = c(v) = i , then x i
u = x i

v = 1. But then the clause (x̄ i
u + x̄ i

v) would be
violated

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

COLORING �p SAT: Consequences

Our reduction COLORING �p SAT implies the following:

Corollary

If SAT possesses a polynomial algorithm,
then also COLORING possesses a polynomial algorithm.

Corollary

If COLORING cannot be solved in polynomial time,
then also SAT cannot be solved in polynomial time.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT

Problem: Vertex Cover (VC)

Instance: An undirected graph G = (V ;E); an integer k 2 N

Question: Does G allow a vertex cover with � k vertices?

Vertex Cover S � V contains (at least) one end-vertex of every edge

Problem: Satisfiability (SAT)

Instance: A logical formula Φ in CNF over X = fx1; : : : ; xng
Question: Does there exist a truth setting for X that satisfies Φ?

Theorem

Vertex Cover �p SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (1st try)

The Boolean variables

For every vertex v 2 V
we introduce a Boolean variable xv .

The clauses

For every edge fu; vg 2 E
we introduce the clause (xu + xv)

For every (k + 1)-element subset S � V
we introduce the clause

∨
v2S

x̄v

Number of variables = jV j
Number of clauses = � jV jk
Total size of formula � k jV jk !!!#!!&!!!!!!!

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (1st try)

The Boolean variables

For every vertex v 2 V
we introduce a Boolean variable xv .

The clauses

For every edge fu; vg 2 E
we introduce the clause (xu + xv)

For every (k + 1)-element subset S � V
we introduce the clause

∨
v2S

x̄v

Number of variables = jV j
Number of clauses = � jV jk
Total size of formula � k jV jk !!!#!!&!!!!!!!

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (1st try)

The Boolean variables

For every vertex v 2 V
we introduce a Boolean variable xv .

The clauses

For every edge fu; vg 2 E
we introduce the clause (xu + xv)

For every (k + 1)-element subset S � V
we introduce the clause

∨
v2S

x̄v

Number of variables = jV j
Number of clauses = � jV jk
Total size of formula � k jV jk !!!#!!&!!!!!!!

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (2nd try)

The Boolean variables

For every vertex v 2 V and for every i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .
(Meaning: v is the i-th vertex in the cover)

The clauses

For every edge fu; vg 2 E
we introduce the clause (x1

u + x2
u + � � �+ xk

u + x1
v + x2

v + � � �+ xk
v)

For every pair of vertices u; v 2 V with u 6= v and for all i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = ???

Number of clauses = ???

Total size of formula = ???

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (2nd try)

The Boolean variables

For every vertex v 2 V and for every i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .
(Meaning: v is the i-th vertex in the cover)

The clauses

For every edge fu; vg 2 E
we introduce the clause (x1

u + x2
u + � � �+ xk

u + x1
v + x2

v + � � �+ xk
v)

For every pair of vertices u; v 2 V with u 6= v and for all i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = ???

Number of clauses = ???

Total size of formula = ???

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (2nd try)

The Boolean variables

For every vertex v 2 V and for every i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .
(Meaning: v is the i-th vertex in the cover)

The clauses

For every edge fu; vg 2 E
we introduce the clause (x1

u + x2
u + � � �+ xk

u + x1
v + x2

v + � � �+ xk
v)

For every pair of vertices u; v 2 V with u 6= v and for all i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = ???

Number of clauses = ???

Total size of formula = ???

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Vertex Cover �p SAT: The Reduction (2nd try)

The Boolean variables

For every vertex v 2 V and for every i 2 f1; : : : ; kg
we introduce a Boolean variable x i

v .
(Meaning: v is the i-th vertex in the cover)

The clauses

For every edge fu; vg 2 E
we introduce the clause (x1

u + x2
u + � � �+ xk

u + x1
v + x2

v + � � �+ xk
v)

For every pair of vertices u; v 2 V with u 6= v and for all i 2 f1; : : : ; kg
we introduce the clause (x̄ i

u + x̄ i
v)

Number of variables = ???

Number of clauses = ???

Total size of formula = ???

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise

Problem: Independent Set (INDEP-SET)

Instance: An undirected graph G = (V ;E) an integer k

Question: Does G contain an independent set of size � k?

Hamiltonian cycle (Ham-Cycle)

Instance: An undirected graph G = (V ;E)
Question: Does G contain a Hamiltonian cycle?

(a simple cycle that visits every vertex exactly once)

Exercise

(a) Prove: INDEP-SET �p SAT
(b) Prove: Ham-Cycle �p SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Exercise

Problem: EvenPath

Instance: an undirected graph G = (V ;E); two vertices s; t 2 V
Question: does there exist a simple path from s to t

that uses an even number of edges?

Problem: OddPath

Instance: an undirected graph G 0 = (V 0;E 0); two vertices s 0; t 0 2 V 0

Question: does there exist a simple path from s 0 to t 0

that uses an odd number of edges?

Exercise

(a) Prove: EvenPath �p OddPath.
(b) Prove: OddPath �p EvenPath.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

NP-Hardness and NP-Completeness (1)

Definition

A decision problem L is NP-hard,
if all problems L0 2 NP can be reduced to it
(that is, if L0 �p L holds for all L0 2 NP)

Theorem

If problem L is NP-hard, we have: L 2 P) P = NP

Proof: A polynomial time algorithm for L together with the reduction L0 �p L yields a
polynomial time algorithm for every L0 2 NP.

Consequence:
NP-hard problems cannot be solved in polynomial time, unless P=NP.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

NP-Hardness and NP-Completeness (1)

Definition

A decision problem L is NP-hard,
if all problems L0 2 NP can be reduced to it
(that is, if L0 �p L holds for all L0 2 NP)

Theorem

If problem L is NP-hard, we have: L 2 P) P = NP

Proof: A polynomial time algorithm for L together with the reduction L0 �p L yields a
polynomial time algorithm for every L0 2 NP.

Consequence:
NP-hard problems cannot be solved in polynomial time, unless P=NP.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

NP-Hardness and NP-Completeness (2)

Definition

A decision problem L is NP-complete,

if L 2 NP, and

if L is NP-hard.

The class of NP-complete problems is denoted by NPC.

Intuition:
NP-complete problems are the hardest problems in NP
Recall: NP is huge and contains tons of important problems
Unless P=NP, NP-complete problems cannot be solved in poly-time
NP-complete problems are considered to be intractable

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Stephen Arthur Cook OC (1939)

Wikipedia: Steve Cook is an American-Canadian computer scientist and mathematician who
has made major contributions to the fields of complexity theory and proof complexity.

His seminal paper “The complexity of
theorem proving procedures” (presented at
the 1971 Symposium on the Theory of
Computing) laid the foundations for the
theory of NP-Completeness.
The ensuing exploration of the boundaries
and nature of the class of NP-complete
problems has become one of the most
active and important research areas in
computer science.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Leonid Anatolievich Levin (1948)

Wikipedia: Leonid Levin is a Soviet-American computer scientist. He obtained his master’s
degree at Moscow University in 1970 where he studied under Andrej Kolmogorov.

Leonid Levin and Stephen Cook
independently discovered the existence
of NP-complete problems. Levin is
known for his work in randomness in
computing, average-case complexity,
algorithmic probability, theory of
computation, and information theory.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Theorem of Cook & Levin

The starting point for all our NP-completeness proofs is the satisfiability problem SAT.

Problem: Satisfiability (SAT)

Instance: A logical formula Φ in CNF over X = fx1; : : : ; xng
Question: Does there exist a truth setting for X that satisfies Φ?

Theorem (Cook & Levin)

SAT is NP-complete.

Proof: Long & technical. Omitted.

Hence: If P 6= NP, then SAT cannot be solved in polynomial time.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

A Cooking Recipe for NP-Completeness Proofs (1)

The NP-completeness of SAT is established by a very long and very technical
“master-reduction” from all problems in NP to SAT

For proving the NP-completeness of other problems, we could of course construct for
every new problem another long and technical master-reduction

But there is a much easier approach to establish NP-completeness via the
NP-completeness of SAT

Theorem

For any NP-hard problem L� we have: L� �p L) L is NP-hard

Proof:
For all L0 2 NP we have L0 �p L� and L� �p L.
Transitivity of �p implies L0 �p L for all L0 2 NP.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

A Cooking Recipe for NP-Completeness Proofs (1)

The NP-completeness of SAT is established by a very long and very technical
“master-reduction” from all problems in NP to SAT

For proving the NP-completeness of other problems, we could of course construct for
every new problem another long and technical master-reduction

But there is a much easier approach to establish NP-completeness via the
NP-completeness of SAT

Theorem

For any NP-hard problem L� we have: L� �p L) L is NP-hard

Proof:
For all L0 2 NP we have L0 �p L� and L� �p L.
Transitivity of �p implies L0 �p L for all L0 2 NP.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

A Cooking Recipe for NP-Completeness Proofs (1)

The NP-completeness of SAT is established by a very long and very technical
“master-reduction” from all problems in NP to SAT

For proving the NP-completeness of other problems, we could of course construct for
every new problem another long and technical master-reduction

But there is a much easier approach to establish NP-completeness via the
NP-completeness of SAT

Theorem

For any NP-hard problem L� we have: L� �p L) L is NP-hard

Proof:
For all L0 2 NP we have L0 �p L� and L� �p L.
Transitivity of �p implies L0 �p L for all L0 2 NP.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

A Cooking Recipe for NP-Completeness Proofs (2)

Here is our cooking recipe:

1. Show that L 2 NP.

2. Pick an NP-complete language L�.

3. (Reduction):
Construct a function f , that maps instances of L� to instances of L.

4. (Polynomial time):
Show that f can be computed in polynomial time.

5. (Correctness):
Show that for x 2 f0; 1g� we have x 2 L� if and only if f (x) 2 L.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: Definition

A k-clause is a clause that consists of exactly k literals
A CNF-formula ' is in k-CNF, if it consists of k-clauses

Example of a formula in 3-CNF

' = (x̄1 _ x̄2 _ x3)︸ ︷︷ ︸
3 literals

^ (x̄1 _ x2 _ x̄3)︸ ︷︷ ︸
3 literals

Problem: 3-SAT

Instance: A logical formula Φ in 3-CNF
Question: Does there exist a satisfying truth setting?

3-SAT is a special case of SAT and hence lies (exactly as SAT) in NP

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: Definition

A k-clause is a clause that consists of exactly k literals
A CNF-formula ' is in k-CNF, if it consists of k-clauses

Example of a formula in 3-CNF

' = (x̄1 _ x̄2 _ x3)︸ ︷︷ ︸
3 literals

^ (x̄1 _ x2 _ x̄3)︸ ︷︷ ︸
3 literals

Problem: 3-SAT

Instance: A logical formula Φ in 3-CNF
Question: Does there exist a satisfying truth setting?

3-SAT is a special case of SAT and hence lies (exactly as SAT) in NP

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (Start)

Theorem

SAT �p 3-SAT

Proof:

Consider an arbitrary formula ' in CNF (instance of SAT)

We will construct a formula '0 in 3-CNF that is equivalent to formula '0:
' is satisfiable , '0 is satisfiable

A 1-clause or 2-clause becomes an equivalent 3-clause by duplicating one or two literals

3-clauses remain 3-clauses

k-clauses with k � 4 are handled by repeatedly applying the following
clause-transformation:
The clause c = (`1 + `2 + `3 + � � �+ `k) is replaced by the two new clauses
(`1 + � � �+ `k�2 + a) and (ā + `k�1 + `k). Here a denotes a newly created auxiliary
variable.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (Start)

Theorem

SAT �p 3-SAT

Proof:

Consider an arbitrary formula ' in CNF (instance of SAT)

We will construct a formula '0 in 3-CNF that is equivalent to formula '0:
' is satisfiable , '0 is satisfiable

A 1-clause or 2-clause becomes an equivalent 3-clause by duplicating one or two literals

3-clauses remain 3-clauses

k-clauses with k � 4 are handled by repeatedly applying the following
clause-transformation:
The clause c = (`1 + `2 + `3 + � � �+ `k) is replaced by the two new clauses
(`1 + � � �+ `k�2 + a) and (ā + `k�1 + `k). Here a denotes a newly created auxiliary
variable.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (Start)

Theorem

SAT �p 3-SAT

Proof:

Consider an arbitrary formula ' in CNF (instance of SAT)

We will construct a formula '0 in 3-CNF that is equivalent to formula '0:
' is satisfiable , '0 is satisfiable

A 1-clause or 2-clause becomes an equivalent 3-clause by duplicating one or two literals

3-clauses remain 3-clauses

k-clauses with k � 4 are handled by repeatedly applying the following
clause-transformation:
The clause c = (`1 + `2 + `3 + � � �+ `k) is replaced by the two new clauses
(`1 + � � �+ `k�2 + a) and (ā + `k�1 + `k). Here a denotes a newly created auxiliary
variable.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (Start)

Theorem

SAT �p 3-SAT

Proof:

Consider an arbitrary formula ' in CNF (instance of SAT)

We will construct a formula '0 in 3-CNF that is equivalent to formula '0:
' is satisfiable , '0 is satisfiable

A 1-clause or 2-clause becomes an equivalent 3-clause by duplicating one or two literals

3-clauses remain 3-clauses

k-clauses with k � 4 are handled by repeatedly applying the following
clause-transformation:
The clause c = (`1 + `2 + `3 + � � �+ `k) is replaced by the two new clauses
(`1 + � � �+ `k�2 + a) and (ā + `k�1 + `k). Here a denotes a newly created auxiliary
variable.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Clause-Transformation: Example

Clause-transformation for a 5-clause

We start from the 5-clause (x1 + x̄2 + x3 + x4 + x̄5)

In the first transformation step we create a 4-clause and a
3-clause: (x1 + x̄2 + x3 + a1) (ā1 + x4 + x̄5)

Then we apply the transformation to the new 4-clause and get
(x1 + x̄2 + a2) (ā2 + x3 + a1) (ā1 + x4 + x̄5). We terminate, as only 3-clauses remain.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Clause-Transformation: Example

Clause-transformation for a 5-clause

We start from the 5-clause (x1 + x̄2 + x3 + x4 + x̄5)

In the first transformation step we create a 4-clause and a
3-clause: (x1 + x̄2 + x3 + a1) (ā1 + x4 + x̄5)

Then we apply the transformation to the new 4-clause and get
(x1 + x̄2 + a2) (ā2 + x3 + a1) (ā1 + x4 + x̄5). We terminate, as only 3-clauses remain.

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Clause-Transformation: Correctness

Old clause: c = (`1 + `2 + `3 + � � �+ `k)
New clauses: c 0 = (`1 + � � �+ `k�2 + a) and c 00 = (ā + `k�1 + `k)

(1) If a truth setting satisfies the two new clauses c 0 and c 00, then it automatically also
satisfies the old clause c :

If a = 0, then `1 + � � �+ `k�2 is true

If a = 1, then `k�1 + `k is true

(2) If a truth setting satisfies the old clause c , then it can be extended to auxiliary variable a
so that both new clauses c 0 and c 00 are satisfied:

The truth setting has at least one true literal in clause c

If `1 + � � �+ `k�2 is true, then we set a = 0

If `k�1 + `k is true, then we set a = 1

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Clause-Transformation: Correctness

Old clause: c = (`1 + `2 + `3 + � � �+ `k)
New clauses: c 0 = (`1 + � � �+ `k�2 + a) and c 00 = (ā + `k�1 + `k)

(1) If a truth setting satisfies the two new clauses c 0 and c 00, then it automatically also
satisfies the old clause c :

If a = 0, then `1 + � � �+ `k�2 is true

If a = 1, then `k�1 + `k is true

(2) If a truth setting satisfies the old clause c , then it can be extended to auxiliary variable a
so that both new clauses c 0 and c 00 are satisfied:

The truth setting has at least one true literal in clause c

If `1 + � � �+ `k�2 is true, then we set a = 0

If `k�1 + `k is true, then we set a = 1

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Clause-Transformation: Correctness

Old clause: c = (`1 + `2 + `3 + � � �+ `k)
New clauses: c 0 = (`1 + � � �+ `k�2 + a) and c 00 = (ā + `k�1 + `k)

(1) If a truth setting satisfies the two new clauses c 0 and c 00, then it automatically also
satisfies the old clause c :

If a = 0, then `1 + � � �+ `k�2 is true

If a = 1, then `k�1 + `k is true

(2) If a truth setting satisfies the old clause c , then it can be extended to auxiliary variable a
so that both new clauses c 0 and c 00 are satisfied:

The truth setting has at least one true literal in clause c

If `1 + � � �+ `k�2 is true, then we set a = 0

If `k�1 + `k is true, then we set a = 1

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (End)

By applying the clause-transformation, we turn a k-clause into a (k � 1)-clause and a
3-clause.

After k � 3 iterations a single old k-clause has turned into k � 2 new 3-clauses.

Hence k � 4 old literals turn into 3k � 6 new literals.

This transformation is applied over and over again, until the formula only has 3-clauses.

If ' contains p literals, then '0 contains at most 3p literals.

Therefore the run time of the reduction is polynomially bounded.

Theorem

SAT �p 3-SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (End)

By applying the clause-transformation, we turn a k-clause into a (k � 1)-clause and a
3-clause.

After k � 3 iterations a single old k-clause has turned into k � 2 new 3-clauses.

Hence k � 4 old literals turn into 3k � 6 new literals.

This transformation is applied over and over again, until the formula only has 3-clauses.

If ' contains p literals, then '0 contains at most 3p literals.

Therefore the run time of the reduction is polynomially bounded.

Theorem

SAT �p 3-SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

3-SAT: NP-Completeness (End)

By applying the clause-transformation, we turn a k-clause into a (k � 1)-clause and a
3-clause.

After k � 3 iterations a single old k-clause has turned into k � 2 new 3-clauses.

Hence k � 4 old literals turn into 3k � 6 new literals.

This transformation is applied over and over again, until the formula only has 3-clauses.

If ' contains p literals, then '0 contains at most 3p literals.

Therefore the run time of the reduction is polynomially bounded.

Theorem

SAT �p 3-SAT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Richard Manning Karp (1935)

Wikipedia: Richard Karp is an American computer scientist, who has made many important
discoveries in computer science, operations research, and in the area of combinatorial
algorithms.

Karp introduced the now standard
methodology for proving problems to be
NP-complete which has led to the
identification of many practical problems as
being computationally difficult.

Edmonds-Karp algorithm for max-flow
Hopcroft-Karp algorithm for matching
Rabin-Karp string search algorithm
Karp-Lipton theorem

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Karp’s list with 21 NP-complete problems

In 1972 Richard Karp established the NP-completeness of 21 combinatorial and graph-theoretic
problems.

SAT 3-SAT
INTEGER PROGRAMMING COLORING
CLIQUE CLIQUE COVER
INDEPENDENT-SET EXACT COVER
VERTEX COVER 3-DIM MATCHING

SET COVER STEINER TREE
FEEDBACK ARC SET HITTING SET
FEEDBACK VERTEX SET SUBSET-SUM
DIR HAM-CYCLE JOB SEQUENCING

UND HAM-CYCLE PARTITION
MAX-CUT

Introduction P and NP Poly. time reductions NP-completeness NP-complete problems

Martin Hoefer WS24/25

Landscape with Karp’s 20 reductions

SAT
INTEGER

PROG 3-SAT

COLORING

CLIQUE
COVER

EXACT
COVER3-DIM

MATCHING

STEINER
TREE

HITTING
SET

SUBSET-SUM

JOB
SEQUENCING

PARTITIONMAX-CUT

SET
COVER

FEEDBACK
ARC SET

FEEDBACK
VERTEX

SET DIRECTED
HAM-CYCLE

HAM
CYCLE

VERTEX
COVER

INDEP
SET

CLIQUE

	Introduction
	Examples
	Motivation
	Definitions
	Polynomial versus exponential

	P and NP
	Classes
	Exercise
	Open Question
	How to continue
	Optimization Problems

	Polynomial time reductions
	COLORING p SAT
	Vertex Cover p SAT
	Exercises

	NP-completeness
	Definition
	Theorem of Cook & Levin
	NP-Completeness of 3-SAT

	NP-complete problems
	Introduction

