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The Post correspondence problem (1)

The Post correspondence problem (PCP) is a domino puzzle.

Each domino piece is labeled with two words over an alphabet Σ, one word in the upper
half and one word in the lower half.

The input consists of a set K of domino pieces.
Each piece may be used arbitrarily often.

The goal is to find a corresponding sequence of dominoes in K , for which the
concatenation of the upper words equals the concatenation of the lower words.

The sequence must contain at least one domino.
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The Post correspondence problem (2a)

Example A

For the domino set

K =

{[
b
ca

]
;

[
a
ab

]
;

[
ca
a

]
;

[
dbd
cef

] [
abc
c

]}
there exists the corresponding sequence h2; 1; 3; 2; 5i with[

a
ab

] [
b
ca

] [
ca
a

] [
a
ab

] [
abc
c

]
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The Post correspondence problem (2b)

Example B

Not every domino set K allows a corresponding sequence,
as for instance the domino set

K =

{[
abc
ca

]
;

[
b
aa

]
;

[
abcb
abc

]
;

[
abc
bc

]}

Why is there no solution?
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The Post correspondence problem (2c)

As an exercise, you may want to find the shortest corresponding sequences for the following
three PCPs (you will need a computer for doing so):

Example C

K1 =

{[
aaba

a

]
;

[
baab
aa

]
;
[ a
aab

]}

K2 =

{[aaa
aab

]
;

[
baa
a

]
;

[
ab
abb

]
;

[
b
aa

]}

K3 =

{[
aab
a

]
;
[ a
ba

]
;

[
b

aab

]}
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The Post correspondence problem (3)

Formal Definition (Post correspondence problem; PCP for short)

An instance of the PCP consists of a finite set

K =

{[
x1

y1

]
; : : : ;

[
xk

yk

]}
where x1; : : : ; xk and y1; : : : ; yk are non-empty words over some finite alphabet Σ.

The problem consists in deciding, whether there exists some corresponding sequence
hi1; : : : ; ini of indices in f1; : : : ; kg with

xi1xi2 : : : xin = yi1yi2 : : : yin

The elements of K are called domino pieces or dominoes.
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The Post correspondence problem (4)

In 1946, the American mathematician Emil Leon Post established the following theorem:

Theorem

The Post correspondence problem is undecidable.

The proof essentially applies the sub-program technique, and shows that an algorithm for the
PCP would imply the existence of an algorithm for the halting program.
The proof is long, somewhat tedious, and omitted in this course.
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Context-free grammars (1)

In week 3 of this course, you have seen the following:

Definition

A context-free grammar (CFG) G is a quadruple (N;Σ;P;S), where

N = set of non-terminal symbols

Σ = terminal alphabet

P = set of rules of the form A ! w
where A 2 N and w 2 (Σ [ N)�

S = special element of N (startsymbol)

Note: In every rule in P the left hand side consists of a single non-terminal symbol
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Context-free grammars (2)

Example

N = fSg

Σ = fa; b; cg

P: S ! aSa j bSb j cSc ; S ! a j b j c ; S ! aa j bb j cc

Derivation:
S ! aSa ! acSca ! acaSaca ! acaaSaaca ! acaabbaaca

Derivation:
S ! bSb ! bbSbb ! bbbSbbb ! bbbbbbbb

Definition

L(G ) is the set of all words over the terminal alphabet Σ,
that can be derived from the startsymbol S
by repeated application of rules in P.
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Decision problems for CFGs

The following problems for CFGs are decidable:

Given CFG hG i and w 2 Σ�, does w 2 L(G ) hold?

Given CFG hG i, is L(G ) empty?

Given CFG hG i, is L(G ) finite?

The following problems for CFGs are undecidable:

Given CFG hG i, does L(G ) = Σ� hold?

Given CFG hG i, is L(G ) regular?

Given CFGs hG1i and hG2i, does L(G1) � L(G2) hold?

Given CFGs hG1i and hG2i, is L(G1) \ L(G2) empty?

Recall: All these problems are decidable for regular languages
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Empty intersection

Theorem

It is undecidable, whether the languages generated by two given CFGs G1 and G2 have empty
intersection.

Sketch of proof:

Consider an arbitrary PCP instance
{[

x1

y1

]
; : : : ;

[
xk

yk

]}
Let b1; : : : ; bk be letters that do not occur in xi and yi

Construct CFGs G1 and G2 with the following rules:

G1 : S ! x1Sb1 j x2Sb2 j � � � j xkSbk j x1b1 j � � � j xkbk

G2 : S ! y1Sb1 j y2Sb2 j � � � j ykSbk j y1b1 j � � � j ykbk

PCP is solvable if and only if L(G1) \ L(G2) is non-empty

G1 : S �! x8 x1 x4 x2 x5 x1 x4 b4 b1 b5 b2 b4 b1 b8

G2 : S �! y8 y1 y4 y2 y5 y1 y4 b4 b1 b5 b2 b4 b1 b8
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Turing-recognizable languages (1)

Recall:

A language L is decided by a C++ program P

if P halts on every input, and

if P exactly accepts the words in L.

Such a language L is called Turing-decidable, or simply decidable.

A language L is recognized by a C++ program P

if P accepts every word in L, and

if P does not accept any word not in L.

Such a language L is called Turing-recognizable, or simply recognizable.
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Turing-recognizable languages (2): Example

Example

The halting problem H = fhPiw j P halts on wg is not Turing-decidable, but
Turing-recognizable.

Proof

The following C++ program PH recognizes language H:

If PH receives a syntactically incorrect input,

then PH rejects the input.

If PH receives an input of the form hPiw ,

then PH simulates P on input w

and accepts, if (as soon as) P halts on w .
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Turing-recognizable languages (3): Exercise

Exercise

The Post Correspondence Problem (PCP) is not Turing-decidable,
but Turing-recognizable.

Why?
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Enumerators

Definition

An enumerator for a language L � Σ� is a variant of a C++ program with a printer attached
to it.

The printer prints its output on an infinitely long piece of paper.

The enumerator program starts without input, and over time prints all the words in L
(possibly with repetitions) on the printer.

Every printed word is printed in a separate line.

The enumerator only prints words from L.
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Recursively enumerable languages

Definition

If a language L possesses an enumerator,
then L is called recursively enumerable, or simply enumerable.

Theorem (recognizability � enumerability)

A language L is recursively enumerable,
if and only if L is Turing-recognizable.
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Proof (1)

Suppose that L is recursively enumerable by an enumerator E .
We construct a C++ program P that recognizes L.

On input word w the program P works as follows:

P starts simulates E .

Everytime E prints a new word, P compares the new word against w and accepts if the
two words coincide.

Correctness:

If w 2 L, then w eventually will be printed.
At that point in time it will be accepted by P.

If w 62 L, then w will never be printed and hence will never be accepted by P.
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Proof (2)

Suppose that L is recognized by a C++ program P.
We construct an enumerator E for language L.

In the k-th round (with k = 1; 2; 3; : : :)

the enumerator simulates the execution of exactly k statements of program P on each
of the words w1; : : : ;wk .

Whenever the simulation accepts one of the words, this word is printed by the
enumerator.

Correctness:
The enumerator E obviously prints only words from L.
But does it really print all the words from L ?

Consider some word wi in language L.

Then wi will be recognized/accepted by P after a finite number ti of executed
statements.

Therefore the enumerator is going to print word wi in every round k with k � maxfi ; tig.
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w1

w2

w3

w4

w5

w6

w7

:::

Number of steps that program P makes on input wi : �!

1
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Intersection (1)

Theorem

(a) If both languages L1 and L2 are decidable,
then also their intersection L1 \ L2 is decidable.

(b) If both languages L1 and L2 are recursively enumerable,
then also their intersection L1 \ L2 is recursively enumerable.
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Intersection (2a): Proof of part (a)

Let P1 and P2 be C++ programs, that respectively decide L1 and L2.

New C++ program P

On input w , program P first simulates the behavior of P1 on w and then the behavior of
P2 on w .

If P1 and P2 both accept w , then also P does accept; otherwise P rejects.

Correctness:

If w 2 L1 \ L2, then w is accepted.

Otherwise w is rejected.
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Intersection (2b): Proof of part (b)

Now let P1 and P2 be C++ programs, that recognize L1 and L2.
We re-use the construction from part (a).

New C++ program P

On input w , program P first simulates the behavior of P1 on w and then the behavior of
P2 on w .

If P1 and P2 both accept w , then also P does accept w .
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Union

Theorem

(a) If both languages L1 and L2 are decidable,
then also L1 [ L2 is decidable.

(b) If both languages L1 and L2 are recursively enumerable,
then also L1 [ L2 is recursively enumerable.

Exercise: Prove these statements
Attention: The proof of part (b) needs a small trick
(programs P1 and P2 are to be executed in parallel)
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Complement (1)

Lemma

If language L � Σ� and its complement L := Σ� n L are both recursively enumerable, then L
is decidable.

Proof

Let P and P be two C++ programs that recognize language L respectively language L.

For an input word w , the new C++ program P 0 simulates the behavior of P on w and
the behavior of P on w in parallel (one statement of P, one statement of P, and so on)

If P accepts, then P 0 accepts.
If P accepts, then P 0 rejects.

Since exactly one of w 2 L and w 62 L holds, program P will terminate after finitely
many steps.
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Complement (2)

Observation 1

If language L is decidable, then also its complement L is decidable.

(Proof: Negate Yes/No acceptance behavior of a C++ program for L.)

Observation 2

The set of recursively enumerable languages is not closed under complement.

Example

The halting problem H is recursively enumerable.
If also the complement H is recursively enumerable, then language H would be decidable.
Hence H is not recursively enumerable.
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The computability landscape (1)

Observation

Every language L belongs to exactly one of the following four families:

(1) L is decidable, and L as well as L are recursively enumerable.

(2) L is recursively enumerable, but L is not recursively enumerable

(3) L is recursively enumerable, but L is not recursively enumerable

(4) Neither L nor L are recursively enumerable

Examples

Family 1: Graph connectivity; Hamiltonian cycle

Family 2: H, H�, D

Family 3: H, H�, D,

Family 4: Htot = fhPi j P halts on every inputg
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The computability landscape (2)

recursively
enumerable
problems

H
H� D

problems with
recursively
enumerable
complement

H
H�D

PCP
decidable
problems

Non-enumerable problems with non-enumerable complement

Htot
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Reductions (1)

Definition

Let L1 and L2 be two languages over alphabet Σ.
Then L1 is reducible to L2 (with the notation L1 � L2),

if there exists a computable function f : Σ� ! Σ�,
so that for all x 2 Σ� we have: x 2 L1 , f (x) 2 L2.

f0; 1g�f0; 1g�

L2
L1

f
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Reductions (2)

A reduction is an algorithm,
that formulates instances of a starting problem
as special cases of a target problem.

P1 for L1

x Reduction:
Translate

x into f (x)

f (x)
P2 for L2

accept

reject
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Reductions (3)

Theorem

If L1 � L2 and if L2 is recursively enumerable,
then also L1 is recursively enumerable.

Proof: We construct a new C++ program P1, that recognizes L1,
by using a sub-program P2 that recognizes L2:

For an input x , program P1 first computes f (x).

Then P1 simulates P2 on input f (x).

P1 accepts input x , if P2 accepts input f (x).

P1 accepts x , P2 accepts f (x)

, f (x) 2 L2

, x 2 L1
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Reductions (4)

The proven theorem and its logically equivalent reverse

If L1 � L2 and if L2 is recursively enumerable,
then also L1 is recursively enumerable.

If L1 � L2 and if L1 is not recursively enumerable,
then also L2 is not recursively enumerable,

P1 for L1

x Reduction:
Translate

x into f (x)

f (x)
P2 for L2

accept

reject
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The total halting problem

Definition (Total halting problem)

Htot = fhPi jP halts for every inputg

We already know: H� is undecidable, but recursively enumerable.
This implies: H� is not recursively enumerable.

We will show:

Claim A: H� � Htot

Claim B: H� � Htot

These two reductions will then together imply:

Theorem

Neither Htot nor Htot is recursively enumerable.
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Claim A: H� � Htot Proof (1)

We describe a computable function f ,
that maps YES-instances of H� into YES-instances of Htot and
that maps NO-instances of H� into NO-instances of Htot.

Let w be an input for H�.

If w is not of the form hPi, then we set f (w) = w .

If w = hPi for some C++ program P, then we set f (w) := hP�

�
i, where the C++

program P�

�
behaves as follows:

P�

�
ignores the input and simulates P on input �.

The described function f is computable. (Why?)



Post Correspondence Problem Recursive enumerability The total halting problem Hilbert’s tenth problem

Martin Hoefer WS24/25

Claim A: H� � Htot Proof (1)

We describe a computable function f ,
that maps YES-instances of H� into YES-instances of Htot and
that maps NO-instances of H� into NO-instances of Htot.

Let w be an input for H�.

If w is not of the form hPi, then we set f (w) = w .

If w = hPi for some C++ program P, then we set f (w) := hP�

�
i, where the C++

program P�

�
behaves as follows:

P�

�
ignores the input and simulates P on input �.

The described function f is computable. (Why?)



Post Correspondence Problem Recursive enumerability The total halting problem Hilbert’s tenth problem

Martin Hoefer WS24/25

Claim A: H� � Htot Proof (2)

For the correctness, we will show:

(a) w 2 H� ) f (w) 2 Htot

(b) w =2 H� ) f (w) 62 Htot

If w is not a C++ program, then w 2 H� and f (w) 2 Htot.
This subcase of (a) has been handled correctly.

If w = hPi for some C++ program P, then we consider f (w) = hP�

�
i.

Then:

w 2 H� ) P does not halt on input �

) P�

�
does not halt on any input

) hP�

�
i 62 Htot

) f (w) = hP�

�
i 2 Htot and (a) is correct.
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Claim A: H� � Htot Proof (3)

For the correctness, we will show:

(a) w 2 H� ) f (w) 2 Htot

(b) w =2 H� ) f (w) 62 Htot

If w = hPi for some C++ program P, then we consider f (w) = hP�

�
i.

Then:

w 62 H� ) w 2 H�

) P halts on input �

) P�

�
halts on every input

) hP�

�
i 2 Htot

) f (w) = hP�

�
i 62 Htot and (b) is correct.

This completes the proof of Claim A. �
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Claim B: H� � Htot Proof (1)

We describe a computable function f ,
that maps YES-instances of H� into YES-instances of Htot and
that maps NO-instances of H� into NO-instances of Htot.

Let w be some input H�. Let w 0 be some word in Htot.

If w is not a C++ program, then we set f (w) = w 0.

If w = hPi for some C++ program P, then we set f (w) := hP 0i where the C++ program
P 0 behaves as follows on inputs of length `:

P 0 simulates the first ` steps of P on input �.
If P halts within these ` steps, then P 0 enters an endless-loop;
otherwise P 0 halts.

The described function f is computable. (Why?)
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Claim B: H� � Htot Proof (2)

For the correctness, we will show:

(a) w 2 H� ) f (w) 2 Htot

(b) w =2 H� ) f (w) 62 Htot

If w is not a C++ program, then w 2 H� and f (w) = w 0 2 Htot.
This subcase of (a) has been handled correctly.
If w = hPi for some C++ program P, then we consider f (w) = hP 0i.
Then:

w 2 H� ) P does not halt on input �

) :9i : P halts within i steps on input �

) 8i : P does not halt within i steps on input �

) 8i : P 0 halts on all inputs of length i

) P 0 halts on every input

) f (w) = hP 0i 2 Htot and (a) is correct.
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w 2 H� ) P does not halt on input �

) :9i : P halts within i steps on input �

) 8i : P does not halt within i steps on input �

) 8i : P 0 halts on all inputs of length i

) P 0 halts on every input

) f (w) = hP 0i 2 Htot and (a) is correct.
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Integration in closed form (1)

Example: Some indefinite integrals

∫
4x3 + 3x2 + 2x + 7 dx = x4 + x3 + x2 + 7x

+ C∫
x sin(x) dx = � x cos(x) + sin(x) + C∫
sin(x)

x
dx = ???∫

e�x2 dx = ???
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Integration in closed form (2)

Rational functions always are integrable in closed form:

Theorem (Liouville, 1838)

If a function f (x) is the ratio of two polynomials P(x) and Q(x),
then f (x) can be written as the sum of several terms of the form

a
(x � b)n

and
ax + b

((x � c)2 + d2)n
:

Since every such term is integrable in closed form,
every rational function f (x) is integrable in closed form.
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Richardson’s theorem

A function is called elementary, if it can be constructed by combining
addition, subtraction, multiplication, division,
exponentiation, taking roots, taking logarithms, taking absolute values,
and trigonometric functions.

In 1968 the British mathematician Daniel Richardson proved the following undecidability
result:

Richardson’s theorem (1968)

It is undecidable, whether a given elementary function has an elementary antiderivative.

The proof reduces the halting problem (for Turing machines) to the integrability problem.
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David Hilbert (1862–1943)

Wikipedia: David Hilbert was a German mathematician. He is recognized as one of the most
influential and universal mathematicians of the 20th century. Hilbert discovered and
developed a broad range of fundamental ideas in many areas, including invariant theory and
the axiomatization of geometry.

In 1920 Hilbert proposed a research
project that became known as Hilbert’s
program. He wanted mathematics to be
formulated on a solid and complete
logical foundation. He believed that in
principle this could be done, by showing
that (1) all of mathematics follows from a
correctly chosen finite system of axioms;
and (2) that one such axiom system is
provably consistent.
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Hilbert’s tenth problem

At the International Congress of Mathematicians in Paris in 1900, David Hilbert presented a
list with 23 mathematical problems.

Hilbert’s tenth problem (original wording)

Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be determined
in a finite number of operations whether the equation is solvable in rational integers.

By “rational integers”, Hilbert simply meant our integers in Z

A “Diophantine equation” is a polynomial equation in one or more variables
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Diophantine equations

A term is a product of variables and an integer coefficient.
For instance

6 � x � x � x � y � z � z bzw. 6x3yz2

is a term over the variables x ; y ; z with the coefficient 6.

A polynomial is a sum of terms, as for instance

6x3yz2 + 3xy2 � x3 � 10

A Diophantine equation sets a polynomial equal to zero.
In other words, the solutions of the equation are the roots of the polynomial. The above
polynomial has the root

(x ; y ; z) = (5; 3; 0)
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Examples (1)

Example 28

Is there an integer solution for the equation x3 + y3 + z3 = 28?

Yes, for example (x ; y ; z) = (0; 1; 3)

Example 29

Is there an integer solution for the equation x3 + y3 + z3 = 29?

Yes, for example (x ; y ; z) = (1; 1; 3)

Example 30

Is there an integer solution for the equation x3 + y3 + z3 = 30?

Yes, for example (x ; y ; z) = (�283059965;�2218888517; 2220422932)
(Discovered by: Beck, Mine, Tarrant & Yarbrough, 2007)
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Examples (2)

Example 31

Is there an integer solution for the equation x3 + y3 + z3 = 31?

No!!

Modulo 9 an integer n can only take the remainders 0;�1;�2;�3;�4.

Modulo 9 a cube n3 can only take the remainders 03; (�1)3; (�2)3; (�3)3; (�4)3.

Modulo 9 a cube n3 can only take the remainders 0;�1.

Modulo 9 a sum x3 + y3 + z3 of three cubes can only take the remainders 0;�1;�2;�3,
but never the remainders �4.

Since 31 � 4 (mod 9), there is no integer solution to this case.
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Examples (3)

Example 32

Is there an integer solution for the equation x3 + y3 + z3 = 32?

No! Since 32 � �4 (mod 9), there is no integer solution to this case.

Example 33

Is there an integer solution for the equation x3 + y3 + z3 = 33?

Nobody knows. Open problem. No solutions with jx j; jy j; jz j � 1012.
That’s actually the old answer (valid till February 2019).

The new answer (valid since March 2019) is:
Yes: (8866128975287528;�8778405442862239;�2736111468807040)
Discovered in March 2019 by Andrew Booker (University of Bristol)
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No! Since 32 � �4 (mod 9), there is no integer solution to this case.

Example 33

Is there an integer solution for the equation x3 + y3 + z3 = 33?

Nobody knows. Open problem. No solutions with jx j; jy j; jz j � 1012.

That’s actually the old answer (valid till February 2019).

The new answer (valid since March 2019) is:
Yes: (8866128975287528;�8778405442862239;�2736111468807040)
Discovered in March 2019 by Andrew Booker (University of Bristol)
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Examples (4)

Some Turing-decidable examples

Quadratic Equation 5x2 � 3x + 6 = 0.
Can be solved by highschool methods. Hence it is easy to check whether the equation
has integer solutions.

Diophantine equations in a single variable x :

anxn + an�1xn�1 + � � � + a2x2 + a1x + a0 = 0

Each integer solution x is a divisor of a0.
Hence it is sufficient to work through all integers x with jx j � ja0j.

Fermat’s equation xn + yn = zn with n � 3.
This Diophantine equation has no positive integers solutions.
(Fermat’s last theorem; theorem of Sir Andrew Wiles)
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Formulation as decision problem

Hilbert’s tenth problem (original wording)

Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be determined
in a finite number of operations whether the equation is solvable in rational integers.

Hilbert’s tenth problem (modern formulation)

Describe an algorithm that decides, whether a given polynomial with integer coefficients has
an integer root.

Hilbert’s tenth problem (in our language)

Describe a C++ program that decides the following language:

Dioph = f hpi j p is a polynomial with integer coefficients
and with an integer rootg
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Recursive enumerability of Dioph

For a polynomial p in ` variables,
the range of p corresponds to the countably infinite language Z`.

The following algorithm recognizes Dioph:

Enumerate the `-tuples in Z` in their canonical ordering
and evaluate p for each such tuple.

Accept, as soon as one of these evaluations yields the value 0.

We conclude:

Theorem

The language Dioph is recursively enumerable.
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Decidability of Dioph (1)

If we had a hard upper bound on the absolute values of the roots, then we could simply
enumerate all the finite set of `-tuples whose components satisfy this upper bound. This
would make problem Dioph decidable.

We have seen:
For polynomials p(x) = akxk + ak�1xk�1 + � � �+ a1x + a0 in a single variable such an
upper bound is given by ja0j.

For polynomials in two or more variables, however, there are no such upper bounds on
the absolute values of the roots: Consider for example the polynomial x + y .

On the other hand: We wouldn’t even need such a strong bound that is valid for all the
roots. It would be sufficient, if a single one of the roots would be bounded.

Does such an upper bound exist?

Or is there perhaps a completely different approach for attacking Hilbert’s tenth
problem?
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Decidability of Dioph (2)

It took seventy years to answer Hilbert’s tenth problem. The Russian mathematician Yuri
Matijasevich solved it with the following theorem:

Theorem of Matijasevich (1970)

The problem, whether a given polynomial with integer coefficients possesses an integer root,
ist undecidable.

The proof is based on a long chain of reductions, that altogether reduces the halting
problem H to the integer root problem Dioph.

Yuri Matijasevich completed the last piece of that chain.

Other important pieces of that chain had been constructed before by Martin Davis, Julia
Robinson and Hilary Putnam, in the years 1950–1970.
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Decidability of Dioph (3)

In fact, the proof chain yields a stronger result:

Theorem (Davis, Robinson, Putnam & Matijasevich)

For every subset Y � Z of the integers, the following two statements are equivalent:

Y is recursively enumerable

There exists a (k + 1)-variate polynomial p(x1; : : : ; xk ; y) with integer coefficients so that
Y = fy 2 Zj 9x1; : : : ; xk 2 Z mit p(x1; : : : ; xk ; y) = 0g

Hence integer polynomials are equally powerful as C++ programs and as Turing
machines.

The proof is technical, difficult, and long (and hence omitted).
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The computability landscape
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