Complexity II

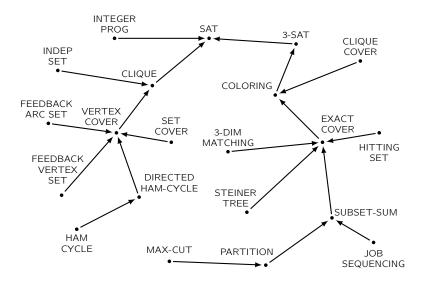
Martin Hoefer

(based on material by Walter Unger)

• More problems may not be solved in polynomial time.

Martin Hoefer WS24/25

Landscape with Karp's 20 reductions

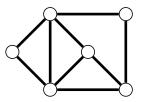


CLIQUE (1): Definition

Problem: CLIQUE

Instance: An undirected graph G = (V, E); an integer k

Question: Does G contain a clique of size (at least) k?



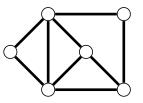
k = 4

CLIQUE (1): Definition

Problem: CLIQUE

Instance: An undirected graph G = (V, E); an integer k

Question: Does G contain a clique of size (at least) k?



k = 4

Theorem

CLIQUE is NP-complete.

CLIQUE (2): According to our Cooking Recipe

- 1. We already know that CLIQUE is in NP.
- 2. We pick the NP-complete language $L^* = SAT$ and we will show that SAT \leq_p CLIQUE.

3. (Reduction):

We construct a function f that translates a CNF-formula φ into a graph G = (V, E) and a number $k \in \mathbb{N}$ such that:

 φ is satisfiable \Leftrightarrow *G* contains *k*-clique

(The other items of the cooking recipe will be settled later.)

Martin Hoefer WS24/25

CLIQUE (3): Description of Function f

Let c₁,..., c_m be the clauses in formula φ.
 Let k_i denote the number of literals in clause c_i.
 Let ℓ_{i,1},..., ℓ_{i,k_i} be the literals in clause c_i.

Martin Hoefer WS24/25

CLIQUE (3): Description of Function f

- Let c₁,..., c_m be the clauses in formula φ.
 Let k_i denote the number of literals in clause c_i.
 Let ℓ_{i,1},..., ℓ_{i,k_i} be the literals in clause c_i.
- For every literal in every clause we create a corresponding vertex:
 V = {ℓ_{ij} | 1 ≤ i ≤ m, 1 ≤ j ≤ k_i}
- Two vertices are connected by an edge, if they come from distinct clauses and if there literals are not negations of each other.

• We set k = m.

Martin Hoefer WS24/25

CLIQUE (3): Description of Function f

- Let c₁,..., c_m be the clauses in formula φ.
 Let k_i denote the number of literals in clause c_i.
 Let ℓ_{i,1},..., ℓ_{i,k_i} be the literals in clause c_i.
- For every literal in every clause we create a corresponding vertex:
 V = {ℓ_{ij} | 1 ≤ i ≤ m, 1 ≤ j ≤ k_i}
- Two vertices are connected by an edge, if they come from distinct clauses and if there literals are not negations of each other.
- We set k = m.

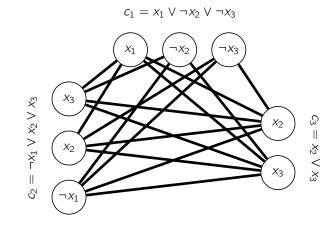
4. (Polynomial time):

The function f can be computed in polynomial time.

Martin Hoefer WS24/25

CLIQUE (4): Example

$$\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3)$$



Martin Hoefer WS24/25

CLIQUE (4): Example

$$\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3)$$

 $c_1 = x_1 \vee \neg x_2 \vee \neg x_3$ $\neg X_3$ X_1 $\neg X \gamma$ X3 *¬x*₁ *V x*₂ *V x*₃ ß *x*₂ $= X_2 \vee X_3$ *x*₂ X_3 $\|$ S ז*X*1

Satisfying truth assignment: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$

CLIQUE (5a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow *G* has *m*-clique

- Consider a satisfying truth assignment of φ
- Form a set U by picking one true literal from every clause
- Claim: *U* forms *m*-clique

CLIQUE (5a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow *G* has *m*-clique

- Consider a satisfying truth assignment of φ
- Form a set U by picking one true literal from every clause
- Claim: *U* forms *m*-clique

Argument:

- By definition |U| = m
- Let ℓ and ℓ' be two distinct literals from U

CLIQUE (5a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow *G* has *m*-clique

- Consider a satisfying truth assignment of φ
- Form a set U by picking one true literal from every clause
- Claim: *U* forms *m*-clique

Argument:

- By definition |U| = m
- Let ℓ and ℓ' be two distinct literals from U
- By construction ℓ and ℓ' come from distinct clauses.
- As ℓ and ℓ' are true, they are not negations of each other.
- Hence there is an edge between ℓ and ℓ' .

CLIQUE (5b): Correctness

Lemma B: G has *m*-clique \Rightarrow formula φ satisfiable

- Consider m-clique U in G
- Then the literals in U belong to m different clauses

CLIQUE (5b): Correctness

Lemma B: G has *m*-clique \Rightarrow formula φ satisfiable

- Consider m-clique U in G
- Then the literals in U belong to m different clauses
- U contains one literal from every clause
- No literal occurs in positive and in negative form
- Hence: All these literals can be satisfied simultaneously
- Hence: φ is satisfiable

CLIQUE (5b): Correctness

Lemma B: G has *m*-clique \Rightarrow formula φ satisfiable

- Consider m-clique U in G
- Then the literals in U belong to m different clauses
- U contains one literal from every clause
- No literal occurs in positive and in negative form
- Hence: All these literals can be satisfied simultaneously
- Hence: φ is satisfiable

5. (Correctness): $x \in L^* \Leftrightarrow f(x) \in L$

 $\varphi \in \mathsf{SAT} \Leftrightarrow f(\varphi) = \langle G; m \rangle \in \mathsf{CLIQUE}$

Independent Set

Problem: Independent Set

Instance: An undirected graph G' = (V', E'); an integer k'

Question: Does G' contain an independent set with (at least) k' vertices?

• An independent set $S \subseteq V$ is a set that does not span any edges

Theorem INDEPENDENT SET is NP-complete.

Independent Set

Problem: Independent Set

Instance: An undirected graph G' = (V', E'); an integer k'

Question: Does G' contain an independent set with (at least) k' vertices?

• An independent set $S \subseteq V$ is a set that does not span any edges

Theorem

INDEPENDENT SET is NP-complete.

Proof:

- We show CLIQUE \leq_p INDEPENDENT-SET
- Set V' = V and $E' = V \times V E$ and k' = k

Vertex Cover (1)

Problem: Vertex Cover (VC)

Instance: An undirected graph G'' = (V'', E''); an integer k''Question: Does G'' contain a vertex cover with (at most) k'' vertices?

• Vertex cover $S \subseteq V$ touches all edges

Theorem

VC is NP-complete.

Vertex Cover (1)

Problem: Vertex Cover (VC)

Instance: An undirected graph G'' = (V'', E''); an integer k''Question: Does G'' contain a vertex cover with (at most) k'' vertices?

• Vertex cover $S \subseteq V$ touches all edges

Theorem

VC is NP-complete.

Proof:

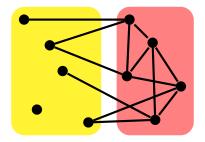
- We show INDEPENDENT-SET \leq_p VC
- Set V'' = V' and E'' = E' and k'' = |V'| k'

Vertex Cover (2)

Observation

In an undirected graph G = (V, E) all subsets $S \subseteq V$ satisfy:

- S is independent set $\Leftrightarrow V S$ is vertex cover
- S is vertex cover $\Leftrightarrow V S$ is independent set



Martin Hoefer WS24/25

D-Ham-Cycle (1): Definition

Problem: Directed Hamilton cycle (D-Ham-Cycle)

Instance: A directed graph G = (V, A)

Question: Does G contain a directed Hamilton cycle?

Theorem D-Ham-Cycle is NP-complete.

D-Ham-Cycle (2): According to our Cooking Recipe

- 1. D-Ham-Cycle is in NP.
- 2. We pick the NP-complete language $L^* = SAT$ and we will show that SAT \leq_p D-Ham-Cycle.

3. (Reduction):

We construct a function f that translates a CNF-formula φ into a directed graph G = (V, A) such that:

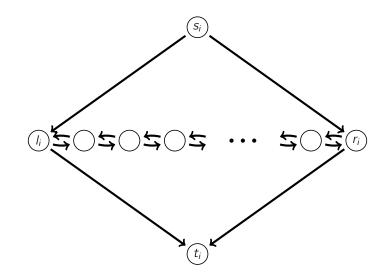
 φ is satisfiable \Leftrightarrow *G* has directed Hamilton cycle

The CNF-formula φ consists of clauses c_1, \ldots, c_m with Boolean variables x_1, \ldots, x_n .

Martin Hoefer WS24/25

D-Ham-Cycle (3a): Reduction / Diamond-Gadgets

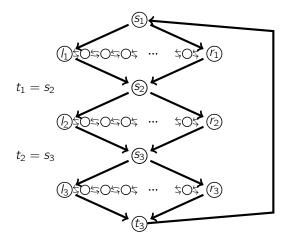
For every variable x_i , we create a corresponding **diamond-gadget** G_i :



Martin Hoefer WS24/25

D-Ham-Cycle (3b): Reduction / Diamond-Gadgets

These *n* diamond-gadgets are connected to each other by identifying vertex t_i and vertex s_{i+1} (for $1 \le i \le n-1$) as well as t_n and s_1 with each other:



D-Ham-Cycle (3c): Reduction / Diamond-Gadgets

In the resulting graph: If a Hamilton cycle starts in vertex s_1 then it must visit the diamond-gadgets in the ordering G_1, G_2, \ldots, G_n .

Martin Hoefer WS24/25

D-Ham-Cycle (3c): Reduction / Diamond-Gadgets

In the resulting graph: If a Hamilton cycle starts in vertex s_1 then it must visit the diamond-gadgets in the ordering G_1, G_2, \ldots, G_n .

The Hamilton cycle may choose for every gadget G_i whether it traverses

- the gadget from left to right (that is: from l_i to r_i)
- or from right to left (that is: from r_i to l_i).

The LR variant is interpreted as truth assignment $x_i = 0$, and the RL variant as truth assignment $x_i = 1$.

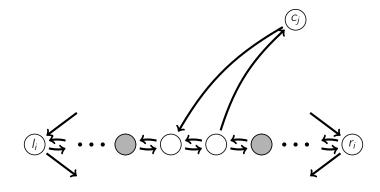
Martin Hoefer WS24/25

D-Ham-Cycle (4a): Reduction / Clause-Vertices

In the next step we create one more vertex for every clause c_j .

(a) If literal x_i occurs in clause c_j ,

then connect gadget G_i in the following way with clause-vertex c_i :

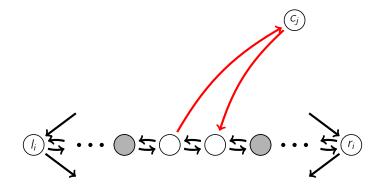


Martin Hoefer WS24/25

D-Ham-Cycle (4b): Reduction / Clause-Vertices

(b) If literal \bar{x}_i occurs in clause c_j ,

then connect gadget G_i in the following way with clause-vertex c_i :



D-Ham-Cycle (4c): Reduction / Clause-Vertices

Question

Is it possible that after the creation of all these clause-vertices some Hamiltonian cycle jumps forward and backward between the diamond-gadgets instead of traversing them in the natural order?

Martin Hoefer WS24/25

D-Ham-Cycle (4c): Reduction / Clause-Vertices

Question

Is it possible that after the creation of all these clause-vertices some Hamiltonian cycle jumps forward and backward between the diamond-gadgets instead of traversing them in the natural order?

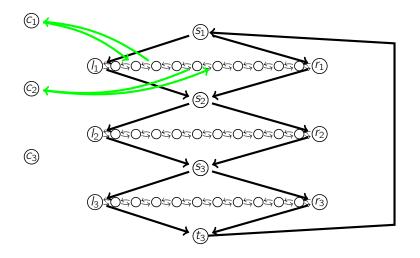
Answer

No. (Why??)

Martin Hoefer WS24/25

D-Ham-Cycle (5): Illustration

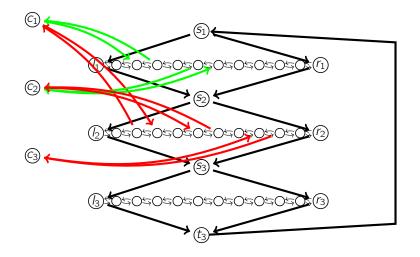
 $\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3)$



Martin Hoefer WS24/25

D-Ham-Cycle (5): Illustration

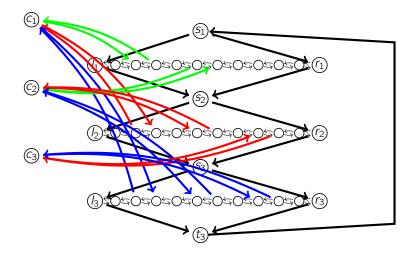
 $\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3)$



Martin Hoefer WS24/25

D-Ham-Cycle (5): Illustration

 $\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3)$



Martin Hoefer WS24/25

D-Ham-Cycle (6a): Correctness

Lemma A: G has directed Hamilton cycle $\Rightarrow \varphi$ satisfiable

D-Ham-Cycle (6a): Correctness

Lemma A: G has directed Hamilton cycle $\Rightarrow \varphi$ satisfiable

- If a clause-vertex c_j is visited from a gadget G_i that is traversed **left-to-right**, then according to our construction clause c_j must contain literal \bar{x}_i .
- Consequently this clause c_j will be satisfied, whenever variable x_i is set to $x_i = 0$ (LR).

D-Ham-Cycle (6a): Correctness

Lemma A: G has directed Hamilton cycle $\Rightarrow \varphi$ satisfiable

- If a clause-vertex c_j is visited from a gadget G_i that is traversed **left-to-right**, then according to our construction clause c_j must contain literal \bar{x}_i .
- Consequently this clause c_j will be satisfied, whenever variable x_i is set to $x_i = 0$ (LR).
- If a clause-vertex c_j is visited from a gadget G_i that is traversed **right-to-left**, then according to our construction clause c_j must contain literal x_i .
- Consequently this clause c_j will be satisfied, whenever variable x_i is set to $x_i = 1$ (RL).

D-Ham-Cycle (6a): Correctness

Lemma A: G has directed Hamilton cycle $\Rightarrow \varphi$ satisfiable

- If a clause-vertex c_j is visited from a gadget G_i that is traversed **left-to-right**, then according to our construction clause c_j must contain literal \bar{x}_i .
- Consequently this clause c_j will be satisfied, whenever variable x_i is set to $x_i = 0$ (LR).
- If a clause-vertex c_j is visited from a gadget G_i that is traversed **right-to-left**, then according to our construction clause c_j must contain literal x_i .
- Consequently this clause c_j will be satisfied, whenever variable x_i is set to $x_i = 1$ (RL).
- Summarizing: The truth setting associated with the Hamilton cycle does indeed satisfy formula φ .

D-Ham-Cycle (6b): Correctness

Lemma B: φ satisfiable \Rightarrow *G* has directed Hamilton cycle

D-Ham-Cycle (6b): Correctness

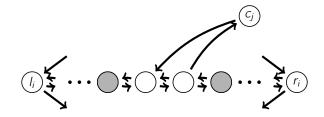
Lemma B: φ satisfiable \Rightarrow *G* has directed Hamilton cycle

• A satisfying truth assignment for the variables determines for every diamond-gadget G_1, \ldots, G_n , whether it is traversed left-to-right or right-to-left.

D-Ham-Cycle (6b): Correctness

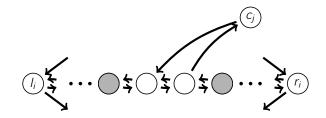
Lemma B: φ satisfiable \Rightarrow *G* has directed Hamilton cycle

- A satisfying truth assignment for the variables determines for every diamond-gadget G_1, \ldots, G_n , whether it is traversed left-to-right or right-to-left.
- The clause-vertex c_j can be built into the traversal: We pick a variable x_i that makes clause c_j true, and we visit c_j by a short excursion from the diamond-gadget G_i .



Martin Hoefer WS24/25

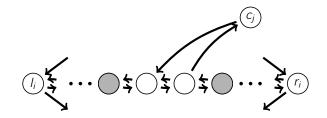
D-Ham-Cycle (6c): Correctness



- If c_j is satisfied for x_i = 1, then x_i occurs in **positive** form in c_j. A right-to-left traversal of diamond-gadget G_i allows a short excursion to c_j.
- If c_j is satisfied for x_i = 0, then x_i occurs in **negative** form in c_j. A left-to-right traversal of diamond-gadget G_i allows a short excursion to c_j.

Martin Hoefer WS24/25

D-Ham-Cycle (6c): Correctness



- If c_j is satisfied for x_i = 1, then x_i occurs in **positive** form in c_j. A right-to-left traversal of diamond-gadget G_i allows a short excursion to c_j.
- If c_j is satisfied for x_i = 0, then x_i occurs in **negative** form in c_j. A left-to-right traversal of diamond-gadget G_i allows a short excursion to c_j.
- Hence all the clause-vertices can be integrated into the traversal.

Martin Hoefer WS24/25

D-Ham-Cycle (7): Wrapping Up

4. (Polynomial time):

Show that f can be computed in polynomial time.

- The construction uses n diamond-gadgets, each with O(m) vertices
- The construction uses *m* clause-vertices

5. (Correctness):

Show that for $x \in \{0, 1\}^*$ we have $x \in L^*$ if and only if $f(x) \in L$.

 $\varphi \in \mathsf{SAT} \Leftrightarrow f(\varphi) = \langle G \rangle \in \mathsf{D}\text{-Ham-Cycle}$

Ham-Cycle (1): Definition

Problem: Hamilton cycle (Ham-Cycle)

Instance: An undirected graph G = (V, E)

Question: Does G contain a Hamilton cycle?

Theorem

Ham-Cycle is NP-complete.

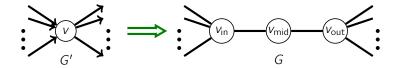
Proof:

- We show D-Ham-Cycle \leq_p Ham-Cycle
- Let G' = (V', A') be an instance of D-Ham-Cycle
- We construct in polynomial time an undirected graph G = (V, E), so that: G' ∈ D-Ham-Cycle ⇔ G ∈ Ham-Cycle

Martin Hoefer WS24/25

Ham-Cycle (2): Reduction

- Let G' = (V', A') be an instance of D-Ham-Cycle
- The undirected graph G results from G' by local replacements:



Interpretation:

- v_{in} is entrance-vertex for v_{mid}
- v_{out} is exit-vertex for v_{mid}

Ham-Cycle (3): Correctness

G' has directed Hamilton cycle \Leftrightarrow G has Hamilton cycle

(A) Each directed Hamilton cycle in G' can easily be translated into a Hamilton cycle in G.

(B) What about the reverse statement?

Ham-Cycle (3): Correctness

G' has directed Hamilton cycle $\Leftrightarrow G$ has Hamilton cycle

(A) Each directed Hamilton cycle in G' can easily be translated into a Hamilton cycle in G.

(B) What about the reverse statement?

- Every Hamilton cycle in G visits vertex v_{mid} right between the two vertices v_{in} and v_{out}
- Either: $v_{in} v_{mid} v_{out}$ Or: $v_{out} v_{mid} v_{in}$

Ham-Cycle (3): Correctness

G' has directed Hamilton cycle $\Leftrightarrow G$ has Hamilton cycle

(A) Each directed Hamilton cycle in G' can easily be translated into a Hamilton cycle in G.

(B) What about the reverse statement?

- Every Hamilton cycle in G visits vertex v_{mid} right between the two vertices v_{in} and v_{out}
- Either: $v_{in} v_{mid} v_{out}$ Or: $v_{out} v_{mid} v_{in}$
- There are no edges between u_{in} and v_{in}
- There are no edges between u_{out} and v_{out}
- Hence every Hamilton cycle in G can be translated into a directed Hamilton cycle for G'.

TSP (1): Definitions

Traveling Salesman Problem (TSP)

```
Instance: Cities 1, ..., n; distances d(i, j); a bound B
Question: Does there exist a roundtrip of length at most B?
```

Two special cases:

```
Problem: \Delta-TSP
Instance: Cities 1,..., n; symmetric distances d(i, j) that satisfy the triangle inequality d(i, j) \leq d(i, k) + d(k, j); a bound B
Question: Does there exist a roundtrip of length at most B?
```

```
Problem: {1,2}-TSP
Instance: Cities 1,..., n; symmetric distances d(i,j) \in \{1,2\}; a bound B
Question: Does there exist a roundtrip of length at most B?
```

TSP (2): Proof of NP-Completeness

Theorem

TSP and Δ -TSP and $\{1, 2\}$ -TSP are NP-hard.

- It is enough to show that $\{1, 2\}$ -TSP is NP-hard.
- We show: Ham-Cycle $\leq_p \{1, 2\}$ -TSP

TSP (2): Proof of NP-Completeness

Theorem

TSP and Δ -TSP and $\{1, 2\}$ -TSP are NP-hard.

- It is enough to show that $\{1, 2\}$ -TSP is NP-hard.
- We show: Ham-Cycle $\leq_p \{1, 2\}$ -TSP
- From an undirected graph G = (V, E) for Ham-Cycle we construct a TSP instance.
- Each vertex $v \in V$ becomes a city
- The distance between city *u* and city *v* is

$$d(u, v) = \begin{cases} 1 & \text{in case } \{u, v\} \in E \\ 2 & \text{in case } \{u, v\} \notin E \end{cases}$$

• We set B := |V|

TSP (2): Proof of NP-Completeness

Theorem

TSP and Δ -TSP and $\{1, 2\}$ -TSP are NP-hard.

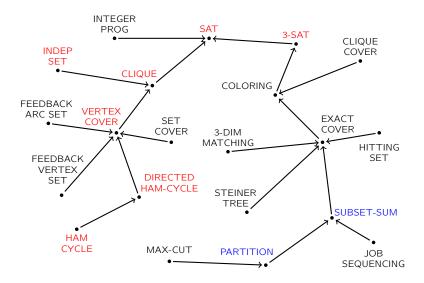
- It is enough to show that $\{1, 2\}$ -TSP is NP-hard.
- We show: Ham-Cycle $\leq_p \{1, 2\}$ -TSP
- From an undirected graph G = (V, E) for Ham-Cycle we construct a TSP instance.
- Each vertex $v \in V$ becomes a city
- The distance between city *u* and city *v* is

$$d(u, v) = \begin{cases} 1 & \text{in case } \{u, v\} \in E \\ 2 & \text{in case } \{u, v\} \notin E \end{cases}$$

- We set B := |V|
- Graph G has a Hamilton cycle, if and only if the constructed TSP instance has a tour of length ≤ B.

Martin Hoefer WS24/25

Landscape with Karp's 20 reductions



SUBSET-SUM (1): Definition

SUBSET-SUM

Instance: Positive integers a_1, \ldots, a_n ; a bound b

Question: Does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Example: Instance for SUBSET-SUM Numbers 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 and b = 999

SUBSET-SUM (1): Definition

SUBSET-SUM

```
Instance: Positive integers a_1, \ldots, a_n; a bound b
```

Question: Does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Example: Instance for SUBSET-SUM Numbers 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 and b = 999

Theorem

SUBSET-SUM is NP-complete.

SUBSET-SUM (2): Reduction

Theorem

SUBSET-SUM is NP-complete.

Proof:

- SUBSET-SUM lies in NP
- We show 3-SAT \leq_p SUBSET-SUM
- Consider Boolean formula φ in 3-CNF as instance of 3-SAT
- The formula has clauses c_1, \ldots, c_m with variables x_1, \ldots, x_n

The reduction works with decimal numbers with n + m digits. The *k*-th digit of an integer *z* will always be denoted z(k).

SUBSET-SUM (3a): Var-Numbers / Definition

We define:

$$S^{+}(i) = \{ j \in \{1, \dots, m\} \mid \text{clause } c_j \text{ contains literal } x_i \}$$

$$S^{-}(i) = \{ j \in \{1, \dots, m\} \mid \text{clause } c_j \text{ contains literal } \bar{x}_i \}$$

SUBSET-SUM (3a): Var-Numbers / Definition

We define:

 $S^+(i) = \{ j \in \{1, \dots, m\} \mid \text{clause } c_j \text{ contains literal } x_i \}$ $S^-(i) = \{ j \in \{1, \dots, m\} \mid \text{clause } c_j \text{ contains literal } \bar{x}_i \}$

For every Boolean variable x_i with $1 \le i \le n$, we create two corresponding Var-numbers a_i^+ and a_i^- with the following digits:

$$a_i^+(i) = 1$$
 and for all $j \in S^+(i)$: $a_i^+(n+j) = 1$
 $a_i^-(i) = 1$ and for all $j \in S^-(i)$: $a_i^-(n+j) = 1$

All other digits in these decimal representations are 0.

SUBSET-SUM (3b): Var-Numbers / Example

As an example, consider the formula

 $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$

The following Var-numbers are created:

SUBSET-SUM (3c): Dummy-Numbers

- For every clause c_j we introduce two corresponding **Dummy-numbers** d_j and d'_j .
- Dummy-numbers have digit 1 at position n + j; all other digits are 0.

Example, continued

Once again consider the formula

 $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \bar{x_3} \lor \bar{x_4})$

The Dummy-numbers for the two clauses are:

$$d_1 = 000010$$

$$d'_1 = 000010$$

$$d_2 = 000001$$

$$d'_2 = 000001$$

Martin Hoefer WS24/25

SUBSET-SUM (3d): Goal Value

The **goal value** *b* is defined as follows:

- b(k) = 1 for $1 \le k \le n$,
- b(k) = 3 for $n + 1 \le k \le n + m$.

Example, completed

Once again consider the formula

 $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor \overline{x_3} \lor \overline{x_4})$

The corresponding goal value is:

b = 111133

SUBSET-SUM (4a): Illustration

An example for a formula with n variables and m clauses:

	1	2	3	• • •	п	n+1	<i>n</i> +2		n + m
a_1^+	1	0	0		0	1	0		
	1	0	0		0	0	0		
a_2^+	0	1	0		0	0	1		
a ₂	0	1	0		0	1	0		
$a_1 \\ a_2^+ \\ a_2^- \\ a_2^+ \\ a_3^+ \end{bmatrix}$	0	0	1		0	1	1		
	÷	÷	:	÷	÷			1	1
a_n^+	0	0	0		1	0	0		
a_n^-	0	0	0		1	0	1		
d_1	0	0	0		0	1	0		0
d' ₁	0	0	0		0	1	0		0
	:	÷	:	÷	:		:	÷	÷
d _m	0	0	0		0	0	0		1
d'_m	0	0	0		0	0	0		1
b	1	1	1		1	3	3	•••	3

Martin Hoefer WS24/25

SUBSET-SUM (4b): Illustration

- For every decimal position *i* ∈ {1,..., *n*} we have: Only two of the Var-numbers and Dummy-numbers have a digit 1 at this position; all other numbers have a digit 0 at this position.
- For every decimal position i ∈ {n + 1,..., n + m} we have: Only five of the Var-numbers and Dummy-numbers have a digit 1 at this position; all other numbers have a digit 0 at this position.

Martin Hoefer WS24/25

SUBSET-SUM (4b): Illustration

- For every decimal position *i* ∈ {1,..., *n*} we have: Only two of the Var-numbers and Dummy-numbers have a digit 1 at this position; all other numbers have a digit 0 at this position.
- For every decimal position i ∈ {n + 1,..., n + m} we have: Only five of the Var-numbers and Dummy-numbers have a digit 1 at this position; all other numbers have a digit 0 at this position.

Observation: No carry-overs

If we add up an arbitrary subset of Var-numbers and Dummy-numbers, then there are no carry-overs from one decimal position to the next one.

Martin Hoefer WS24/25

SUBSET-SUM (5): Time Complexity of Reduction

- The SAT instance φ consists of *n* variables and *m* clauses. The input size is $\geq m + n$.
- The constructed SUBSET-SUM instance consists of 2n + 2m + 1 decimal numbers each with m + n decimal places.
- The reduction can be performed $O((m+n)^2)$ in polynomial time.

SUBSET-SUM (6a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow SUBSET-SUM instance solvable

Suppose there is a satisfying truth setting x^* for formula φ .

SUBSET-SUM (6a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow SUBSET-SUM instance solvable

Suppose there is a satisfying truth setting x^* for formula φ .

- If $x_i^* = 1$, then select a_i^+ ; otherwise select a_i^-
- The sum of the selected Var-numbers is denoted A
- As for every $i \in \{1, ..., n\}$ either a_i^+ or a_i^- has been selected, we have A(i) = 1

SUBSET-SUM (6a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow SUBSET-SUM instance solvable

Suppose there is a satisfying truth setting x^* for formula φ .

- If $x_i^* = 1$, then select a_i^+ ; otherwise select a_i^-
- The sum of the selected Var-numbers is denoted A
- As for every $i \in \{1, ..., n\}$ either a_i^+ or a_i^- has been selected, we have A(i) = 1
- Furthermore A(n+j) ∈ {1,2,3} for 1 ≤ j ≤ m, as every clause contains one or two or three true literals.

SUBSET-SUM (6a): Correctness

Lemma A: Formula φ satisfiable \Rightarrow SUBSET-SUM instance solvable

Suppose there is a satisfying truth setting x^* for formula φ .

- If $x_i^* = 1$, then select a_i^+ ; otherwise select a_i^-
- The sum of the selected Var-numbers is denoted A
- As for every $i \in \{1, ..., n\}$ either a_i^+ or a_i^- has been selected, we have A(i) = 1
- Furthermore A(n+j) ∈ {1,2,3} for 1 ≤ j ≤ m, as every clause contains one or two or three true literals.
- If $A(n+j) \in \{1,2\}$, then we additionally select d_j and/or d'_j , so that we have digit 3 at position n+j of the sum.

Hence there exists a subset with the desired goal sum b.

SUBSET-SUM (6b): Correctness

Lemma B: SUBSET-SUM instance solvable \Rightarrow formula φ satisfiable

Suppose that there exists a subset K_A of the Var-numbers (with sum A) and a subset K_D of the Dummy-numbers (with sum D), that sum up to the goal sum b; hence: A + D = b.

SUBSET-SUM (6b): Correctness

Lemma B: SUBSET-SUM instance solvable \Rightarrow formula φ satisfiable

Suppose that there exists a subset K_A of the Var-numbers (with sum A) and a subset K_D of the Dummy-numbers (with sum D), that sum up to the goal sum b; hence: A + D = b.

• The set K_A contains for every $i \in \{1, ..., n\}$ exactly one of the two Var-numbers a_i^+ and a_i^- ; otherwise we would have $A(i) \neq 1$.

SUBSET-SUM (6b): Correctness

Lemma B: SUBSET-SUM instance solvable \Rightarrow formula φ satisfiable

Suppose that there exists a subset K_A of the Var-numbers (with sum A) and a subset K_D of the Dummy-numbers (with sum D), that sum up to the goal sum b; hence: A + D = b.

- The set K_A contains for every $i \in \{1, ..., n\}$ exactly one of the two Var-numbers a_i^+ and a_i^- ; otherwise we would have $A(i) \neq 1$.
- We set $x_i = 1$ in case $a_i^+ \in K_A$, and otherwise $x_i = 0$.

SUBSET-SUM (6b): Correctness

Lemma B: SUBSET-SUM instance solvable \Rightarrow formula φ satisfiable

Suppose that there exists a subset K_A of the Var-numbers (with sum A) and a subset K_D of the Dummy-numbers (with sum D), that sum up to the goal sum b; hence: A + D = b.

- The set K_A contains for every $i \in \{1, ..., n\}$ exactly one of the two Var-numbers a_i^+ and a_i^- ; otherwise we would have $A(i) \neq 1$.
- We set $x_i = 1$ in case $a_i^+ \in K_A$, and otherwise $x_i = 0$.
- Then $A(n+j) \ge 1$ for $1 \le j \le m$. Otherwise we would have $A(n+j) + H(n+j) \le A(n+j) + 2 < 3$.
- This guarantees that in each clause there is at least one literal with value 1.

Hence the formula φ is satisfiable.

PARTITION (1): Definition

Problem: PARTITION

Instance: Positive integers a'_1, \ldots, a'_n ; with $\sum_{i=1}^n a'_i = 2A'$ Question: Does there exist an index set $I \subseteq \{1, \ldots, n\}$ with $\sum_{i \in I} a'_i = A'$?

PARTITION is the special case of SUBSET-SUM with $b := (\sum a_i)/2$

Theorem

PARTITION is NP-complete.

Proof:

- PARTITION is in NP
- We show SUBSET-SUM \leq_p PARTITION

Martin Hoefer WS24/25

PARTITION (2): Reduction

- Let $a_1, \ldots, a_n \in \mathbb{N}$ and $b \in \mathbb{N}$ be an aribtrary instance of SUBSET-SUM
- Let $S := \sum_{i=1}^{n} a_i$, and w.l.o.g. assume $S \ge b$

We map this SUBSET-SUM instance into a PARTITION instance, that consists of the following n + 2 numbers a'_1, \ldots, a'_{n+2} :

Martin Hoefer WS24/25

PARTITION (2): Reduction

- Let $a_1, \ldots, a_n \in \mathbb{N}$ and $b \in \mathbb{N}$ be an aribtrary instance of SUBSET-SUM
- Let $S := \sum_{i=1}^{n} a_i$, and w.l.o.g. assume $S \ge b$

We map this SUBSET-SUM instance into a PARTITION instance, that consists of the following n + 2 numbers a'_1, \ldots, a'_{n+2} :

- $a'_i = a_i$ for $1 \le i \le n$
- $a'_{n+1} = 2S b$ and $a'_{n+2} = S + b$

Martin Hoefer WS24/25

PARTITION (2): Reduction

- Let $a_1, \ldots, a_n \in \mathbb{N}$ and $b \in \mathbb{N}$ be an aribtrary instance of SUBSET-SUM
- Let $S := \sum_{i=1}^{n} a_i$, and w.l.o.g. assume $S \ge b$

We map this SUBSET-SUM instance into a PARTITION instance, that consists of the following n + 2 numbers a'_1, \ldots, a'_{n+2} :

- $a'_i = a_i$ for $1 \le i \le n$
- $a'_{n+1} = 2S b$ and $a'_{n+2} = S + b$

The sum of these n + 2 numbers is $\sum_{i=1}^{n+2} a'_i = 4S$. Therefore A' := 2S holds in the PARTITION instance.

The reduction can be done in polynomial time.

PARTITION (3a): Correctness

Lemma A: SUBSET-SUM instance solvable \Rightarrow PARTITION instance solvable

- If the SUBSET-SUM instance contains a subset of the numbers a_1, \ldots, a_n with sum b, then the corresponding numbers a'_1, \ldots, a'_n in the PARTITION instance also have sum b.
- We add the number $a'_{n+1} = 2S b$ to this subset, and we get a subset with the desired goal sum A' = 2S.

PARTITION (3b): Correctness

Lemma B: PARTITION instance solvable ⇒ SUBSET-SUM instance solvable

- In any solution of the PARTITION instance, the two numbers $a'_{n+1} = 2S b$ and $a'_{n+2} = S + b$ cannot be both in the same part, as $a'_{n+1} + a'_{n+2} = 3S > A'$ holds.
- Hence one of the two parts consists of $a'_{n+1} = 2S b$ and a subset of the numbers a'_1, \ldots, a'_n with total sum A' = 2S.
- The corresponding numbers in the SUBSET-SUM instance then have sum *b*.

Coding Length (1)

- Let X be an algorithmic problem
- We measure the running time of an algorithm *A* for problem *X* in terms of the **coding length** (or **size**) of the instances *I* of *X*
- The coding length |I| is the number of symbols in a "reasonable" description of instance I
- Small (polynomial) changes in such descriptions are irrelevant for our definitions / theorems / proofs / results

Coding Length (2)

Example: Undirected graphs

Reasonable descriptions of undirected graphs G = (V, E) are

- adjacency lists of length $\ell_1(G) = O(|E| \log |V|)$
- adjacency matrices of length $\ell_2(G) = O(|V|^2)$

We have:

- $\ell_1(G)$ is polynomially bounded in $\ell_2(G)$
- $\ell_2(G)$ is polynomially bounded in $\ell_1(G)$

Coding Length (3)

Example: Natural numbers

Reasonable descriptions of natural numbers n are

- Decimal representation of length $\approx \log_{10} n$
- Binary representation of length $\approx \log_2 n$
- Octal representation of length $\approx \log_8 n$
- Hexadecimal representation of length $\approx \log_{16} n$

For all real numbers a, b > 1 we have: $\log_a n = \log_a b \cdot \log_b n$ Hence the various coding lengths only differ by a constant factor.

Remark

The number *n* represents the **value** *n* with **coding length** $O(\log n)$. Note that the value depends exponentially on the coding length.

Value versus Coding Length

Definition: Number

For an instance / of some algorithmic problem, we denote by **Number(I)** the value of the larget number in /.

Value versus Coding Length

Definition: Number

For an instance / of some algorithmic problem, we denote by **Number(I)** the value of the larget number in /.

Example

• For a TSP instance *I*,

Number(1) equals the largest inter-city distance $max_{i,j}d(i, j)$.

• For a SUBSET-SUM instance /,

Number(1) equals the maximum of the numbers a_1, \ldots, a_n and b.

• For a SAT instance /,

Number(1) equals the maximum of the numbers n and m. (Ergo: Number(1) $\leq |1|$.)

The parameter Number(I) is only relevant for problems that deal with distances, costs, weights, lengths, profits, time intervals, etc

More NPC-Problems

Martin Hoefer WS24/25

Pseudo-Polynomial Time (1): Definition

Definition: Pseudo-polynomial time

An algorithm A solves a problem X in **pseudo-polynomial** time, if the run time of A on instances I of X is polynomially bounded in |I| and Number(I).

More NPC-Problems

Martin Hoefer WS24/25

Pseudo-Polynomial Time (1): Definition

Definition: Pseudo-polynomial time

An algorithm A solves a problem X in **pseudo-polynomial** time, if the run time of A on instances I of X is polynomially bounded in |I| and Number(I).

Theorem

The problems SUBSET-SUM and PARTITION are pseudo-polynomially solvable.

Pseudo-Polynomial Time (2): Example

SUBSET-SUM

Instance: Positive integers a_1, \ldots, a_n ; a bound b

Question: Does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Theorem

SUBSET-SUM is solvable in pseudo-polynomial time $O(n \cdot b)$.

Pseudo-Polynomial Time (2): Example

SUBSET-SUM

Instance: Positive integers a_1, \ldots, a_n ; a bound b

Question: Does there exist an index set $I \subseteq \{1, ..., n\}$ with $\sum_{i \in I} a_i = b$?

Theorem

SUBSET-SUM is solvable in pseudo-polynomial time $O(n \cdot b)$.

Proof:

- Dynamic programming: For k = 0, ..., n and c = 0, ..., bwe set F[k, c] = TRUE if and only if there exists an index set $I \subseteq \{1, ..., k\}$ with $\sum_{i \in I} a_i = c$.
- F[0, c] = (c == 0) for c = 0, ..., b $F[k, c] = F[k - 1, c - a_k] \vee F[k - 1, c]$
- In the end, the answer is found in F[n, b] \Box

More NPC-Problems

Martin Hoefer WS24/25

