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Computing devices (2)

Central question:
Which problems can be solved by a computer?

There are many different computing devices.
Does the answer depend on the concrete computing device?
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Charles Babbage (1791-1871)

Wikipedia: Charles Babbage was an English polymath.
A mathematician, philosopher, inventor and mechanical engineer, Babbage originated the
concept of a digital programmable computer.

Considered by some to be a “father of the computer”, Babbage is credited with inventing the
first mechanical computer that eventually led to more complex electronic designs, though all
the essential ideas of modern computers are to be found in Babbage’s analytical engine.
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The Analytical Engine

Trial model of a part of the Analytical Engine,
built by Babbage, as displayed at the Science Museum (London)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

Ability and potential of the computer (1)

Quote (Charles Babbage)

“As soon as an Analytical Engine exists, it will necessarily guide the future course of the
science. Whenever any result is sought by its aid, the question will then arise | by what course
of calculation can these results be arrived at by the machine in the shortest time?”

Quote (British Prime Minister Sir Robert Peel, 1842):
“What shall we do to get rid of Mr. Babbage and his calculating machine? Surely if
completed it would be worthless as far as science is concerned?”
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Ability and potential of the computer (2)

In 1984 the TIME magazine ran a cover story on computer software. The editor of some
software magazine was quoted as saying:

“Put the right kind of software into a computer,
and it will do whatever you want it to.
There may be limits on what you can do with the machines themselves, but there are no
limits on what you can do with software.”

That’s a bold statement.
And it is wrong. Wrong. Totally wrong. Absolutely wrong.
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Ability and potential of the computer (3)

Question

Does there exist a C++ program P,
that outputs “Hello, World!” and then stops?

#include <iostream>

using namespace std;

int main()

{

cout << "Hello, World!";

return 0;

}
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Ability and potential of the computer (4)

Follow-up question

Are you able to analyze a text-file with some C++ program P
in the following way?

If P outputs “Hello, World!” and then stops,
then you should say “Good”.

If P does behave in any other way,
then you should say “Bad”.
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Ability and potential of the computer (5)

Follow-up question

Are you able to write a C++ program Q,
that takes as input a file with some C++ program P,
and behaves as follows:

If P outputs “Hello, World!” and then stops,
then program Q outputs “Good” and stops.

If P does behave in any other way,
then program Q outputs “Bad” and stops.
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The absolute limits of the computer (1)

A computer takes an input, computes, and generates an output:

Input Output

Central question

Do there exist problems,
that cannot be solved by a computer?

Central question (better formulation)

Do there exist “algorithmic problems” (or “computational problems”),
that cannot be solved by a computer?
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The absolute limits of the computer (2)

Central question (better formulation)

Do there exist “algorithmic problems” (or “computational problems”),
that cannot be solved by a computer?

The answer

There is no computer program / no algorithm that decides,
whether a given computer program ever reaches a given state.

Example
Error: 0E : 016F : BFF9B3D4
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The absolute limits of the computer (3)

Once again:

The answer

There is no computer program / no algorithm that decides,
whether a given computer program ever reaches a given state.

(The proof will be discussed later on.)

Even worse:
There are no algorithms for verifying the correctness of a program
There is no algorithm, that can decide whether a given program
always computes and outputs the sum of two input numbers
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Alphabets and words

Inputs and outputs are words over some alphabet Σ

Examples for alphabets: Σ = f0; 1;#g
Σ = fa; b; c ; : : : ; zg

Σk is the set of all words of length k , as for instance
f0; 1g3 = f000; 001; 010; 011; 100; 101; 110; 111g

The empty word (the word of length 0) is denoted by �.
Hence: Σ0 = f�g

Σ� =
∪

k2N0
Σk is the Kleene closure of Σ and contains all words over Σ.

The words in Σ� can be enumerated by increasing length:

�; 0; 1; 00; 01; 10; 11; 000; 001; 010; 011; 100; 101; : : :
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Computational problems (1)

A computational problem translates an input into an output

Hence, the problem corresponds to a function f : Σ� ! Σ0�

For input x 2 Σ�, the corresponding output is f (x) 2 Σ0�

Example: Multiplication

For two given natural numbers i1; i2 2 N (input), we would like to find the corresponding
product i1 � i2 (output).

The numbers i1 and i2 are separated by a separation symbol #, and the alphabet is
Σ = f0; 1;#g.

The corresponding function f : Σ� ! Σ� is given by

f (bin(i1)#bin(i2)) = bin(i1 � i2)
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Computational problems (2)

Many problems can be formulated as Yes-No-questions.

Such problems are called decision problems.
Their corresponding functions are of the form f : Σ� ! f0; 1g, where 0 means “No” and
1 means “Yes”.

Let L = f �1(1) � Σ� be the set of all inputs with answer “Yes”.
Then L is a language over alphabet Σ.

We say: Language L is the language that corresponds to the underlying decision problem.
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Example: Decision problems as languages

Example: Graph connectivity

Problem: For a given undirected graph G = (V ;E ) we want to determine whether G is
connected.

The graph G is appropriately encoded as a word code(G ) 2 Σ�, for instance as an adjacency
matrix encoded in binary.

Example: 1

2
3  

0 0 1
0 0 0
1 0 0

  001000100

The language that corresponds to the decision problem is

L = f w 2 Σ� j 9 graph G : w = code(G ), and G is connectedg
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Definition

Definition: Countable set

A set M is countable,
if either M is empty,
or if there exists a surjective function c : N! M.

Every finite set M is countable

The elements of a countable set can be numbered and enumerated

For a countably infinite set M, there always exists a bijective (bijective =
surjective+injective) function c : N! M: Repeated elements in may simply be skipped
in the enumeration

Hence: Countably infinite sets have the same cardinality as set N
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Examples of countable sets (1)

Example: Z

The set Z of integers is countable. The function

c(i) =

{
i=2 for even i
�(i + 1)=2 for odd i

yields a bijection as desired. The resulting enumeration is:

0; �1; 1; �2; 2; �3; 3; �4; 4; �5; 5; : : : ;
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Examples of countable sets (2a)

Example: Q

The set Q of rational numbers is countable. One possible enumeration is:

0;
1
1
;

2
1
;
1
2
;

3
1
;
2
2
;
1
3
; : : : ;

i
1
;
i � 1

2
;
i � 2

3
; : : :

1
i
; : : :
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Examples of countable sets (2b)

1 2 3 4 5 6 : : :

: : :

1

2

3

4

5

6
:::

:::

1=1

1=2

1=3

1=4

1=5

1=6

2=1

2=2

2=3

2=4

2=5

2=6

3=1

3=2

3=3

3=4

3=5

3=6

4=1

4=2

4=3

4=4

4=5

4=6

5=1

5=2

5=3

5=4

5=5

5=6

6=1

6=2

6=3

6=4

6=5

6=6
: : :
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Examples of countable sets (3)

Example: Σ�

The set Σ� of words over a finite alphabet Σ is countable.
For instance, f0; 1g� may be enumerated in canonical order as

�; 0; 1; 00; 01; 10; 11; 000; 001; 010; 011; 100; 101; 110; 111; : : :

Notation (will be used in later lectures)

The i-th word over the binary alphabet Σ = f0; 1g in the canonical order will be denoted by
wi .

There exists a C++ program that
takes as input an integer i and outputs wi .
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Examples of countable sets (4)

Example: C++ programs

The set of words hPi that describe valid C++ programs is countable.

The set of valid C++ programs is countable.

Notation (will be used in later lectures)

The i-th C++ program in the canonical ordering of the words hPi will be denoted by Pi .

There exists a C++ program that
takes as input an integer i and outputs Pi .
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Definition

Definition: Uncountable set

A set M is uncountable, if it is not countable.



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

Uncountability proof (1)

The power set P(N) is the set of all subsets of N = f1; 2; 3; : : :g.

Theorem

The set P(N) is uncountable.

Proof: by diagonalization

Let us assume for the sake of contradiction that P(N) is countable

Let S0;S1;S2;S3; : : : be an enumeration of P(N).

We define a 2-dimensional infinite matrix (Ai ;j )i ;j2N with

Ai ;j =

{
1 if j 2 Si

0 otherwise
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Uncountability proof (2)

This matrix A might for instance look as follows:

0 1 2 3 4 5 6

f1; 2; 4; 6; : : :g =

S0 0 1 1 0 1 0 1 � � �

f0; 1; 2; 4; 6; : : :g =

S1 1 1 1 0 1 0 1 � � �

S2 0 0 1 0 1 0 1 � � �

S3 0 1 1 0 0 0 1 � � �

S4 0 1 0 0 1 0 1 � � �

S5 0 1 1 0 1 0 0 � � �

S6 1 1 1 0 1 0 0 � � �
:::

:::
:::

:::
:::

:::
:::

:::

We define the diagonal set Sdiag = fi 2 N j Ai ;i = 1g

The complement of the diagonal set is Sdiag = N n Sdiag = fi 2 N j Ai ;i = 0g
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Uncountability proof (3)

Note: The set Sdiag is a subset of N

Hence: Sdiag shows up in the enumeration S1;S2; : : : of P(N)

Hence: There exists k 2 N with Sdiag = Sk .

What is the value of the matrix element Ak;k?

Ak;k = 1
Def. Sdiag
) k 62 Sdiag ) k 62 Sk

Def. A
) Ak;k = 0

Ak;k = 0
Def. Sdiag
) k 2 Sdiag ) k 2 Sk

Def. A
) Ak;k = 1

The case Ak;k = 1 yields a contradiction, and also the case Ak;k = 0 yields a
contradiction. Hence there is no enumeration of P(N).
This completes our proof!
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Test: Which set has the larger cardinality?

1. f1; : : : ; ng

<

N

finite countable

2. f g�

<

P(N)
countable uncountable

3. R

=

P(N)
uncountable uncountable

4. Graphs with 9n : V (G ) = f1; : : : ; ng

=

f0; 1g�

countable countable

5. N

>

fRg

countable one-element

6. C++ Programs

<

P(f0; 1g�)
countable uncountable
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Crucial question

Crucial question

Which functions can be computed by an algorithm?
Which languages can be decided by an algorithm?

The question is not clearly formulated.
For an answer, we need to fix the definition of an algorithm.

Standard definition in most theory courses: Turing machine (TM) or Random Access
Machine (RAM)

Our definition in this course: C++ program
Note: JAVA is fine, too.
Note: Haskell is fine, too.
Note: Every (higher) programming language would be fine.
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The Church-Turing thesis (1)

Church-Turing thesis

The class of “intuitively computable” functions coincides with
the class of functions that can be computed by a Turing machine.

Church-Turing thesis (our variant as used in this course)

The class of “intuitively computable” functions coincides with
the class of functions that can be computed by a C++ program.

All known “reasonable” models of computation are exactly as powerful as the Turing machine:

Lambda-calculus by Alonzo Church: equivalent to Turing machine

Canonical systems by Emil Post: equivalent to Turing machine

�-recursive functions by Kurt Gödel: equivalent to Turing machine
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The Church-Turing thesis (2)

All standard higher programming languages are exactly as powerful as Turing machines
and C++ programs: Algol, Pascal, C, FORTRAN, COBOL, Java, Smalltalk, Ada, C++,
Python, LISP, Haskell, PROLOG, etc.

PostScript, Tex, Latex are exactly as powerful as Turing machines

Even PowerPoint is exactly as powerful as the Turing machine (because of its Animated
Features)

Pure HTML (without JavaScript; without browser) is strictly weaker than the Turing
machine

Table Calculations (without loops) are strictly weaker than the Turing machine
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The Church-Turing thesis (3)

Fun fact: Certain infinite variants of the MineSweeper game are exactly as powerful as Turing
machines and C++ programs.
(Richard Kayes: “Infinite Versions of Minesweeper are Turing-complete”, 2007)
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Alonzo Church (1903–1995)

Wikipedia: Alonzo Church was an American mathematician and logician who made major
contributions to mathematical logic and the foundations of theoretical computer science.

He is best known for the lambda calculus, Church-Turing thesis, proving the undecidability of
the Entscheidungsproblem, Frege-Church ontology, and the Church-Rosser theorem.
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Alan Mathison Turing OBE FRS (1912–1954)

Wikipedia: Alan Turing was an English computer scientist, mathematician, logician,
cryptanalyst, philosopher and theoretical biologist.

Turing was highly influential in the development of theoretical computer science, providing a
formalisation of the concepts of algorithm and computation with the Turing machine, which
can be considered a model of a general purpose computer. Turing is widely considered to be
the father of theoretical computer science and artificial intelligence.
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Computable and recognizable languages (1)

Definition

A function f : Σ� ! Σ� is Turing-computable,
if there exists a C++ program that on every input x terminates
and outputs the function value f (x).

Remark: “Turing-computable” is often simply called “computable”

Definition

A language L � Σ� is Turing-decidable,
if there exists a C++ program that terminates on all inputs, and
that accepts input w if and only if w 2 L.

Remark: “Turing-decidable” is often simply called “decidable”
Remark: “accept” , output 1, and “reject” , output 0
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Computable and recognizable languages (2)

Definition

A language L � Σ� is Turing-recognizable,
if there exists a C++ program that
for all w 2 L: terminates and accepts, and
for all w =2 L: either does not terminate, or does terminate and reject.

Equivalent definition

A language L � Σ� is Turing-recognizable,
if there exists a C++ program that
for all w 2 L: does terminate, and
for all w =2 L: does not terminate.
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Computable and recognizable languages (3)

True or false?

If L � Σ� is Turing-decidable,
then L is also Turing-recognizable.

True or false?

If L � Σ� is Turing-recognizable,
then L is also Turing-decidable.
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C++ programs (1)

A word w is accepted by program P, if on input w the program eventually terminates and
outputs YES.

Notation

For a C++ program P,
we let L(P) denote the set of all words that are accepted by P.

True or false?

L � Σ� is Turing-recognizable, if and only if
there exists a C++ program P with L(P) = L.

True or false?

L � Σ� is Turing-decidable, if and only if
there exists a C++ program P with L(P) = L.
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C++ programs (2)

Every C++ program is a piece of text (sequence of ascii symbols).
Every C++ program is a word over the alphabet of ascii symbols.

For a C++ program P, we denote the corresponding word by hPi.

Let LC++ denote the language of all valid C++ programs.
(Note: valid = syntactically correct)

Fact

The language LC++ is Turing-decidable.

Proof: Use a C++ compiler
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C++ programs (3)

Fact

There exists a C++ program P� that behaves as follows.

P� takes as input an arbitrary C++ program P and an arbitrary input word w for P

If P terminates on input w and generates an output w 0,
then also P� terminates with output w 0

If P does not terminate on input w ,
then also P� does not terminate.

Proof: Use an emulator (written in C++) for C++ programs

Remark: In the language of Turing machines,
this program P� is usually called a “universal Turing machine”
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Undecidability

Undecidable problems
The diagonal language
The complement of the diagonal language
The sub-program technique
The halting problem
The Epsilon-halting problem
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The number of computational problems

Every computational problem with inputs encoded in binary corresponds to a language over
the alphabet f0; 1g (and also the other way round).

Let L denote the set of all computational problems over f0; 1g.

A computational problem L 2 L is a subset of f0; 1g�.

Hence L is the set of all subsets of f0; 1g�.
Hence L is the power set of f0; 1g�.
Hence L = P(f0; 1g�).

We observe:

f0; 1g� has the same cardinality as N.

Hence L = P(f0; 1g�) has the same cardinality as P(N).

Therefore the set L of computational problems is uncountable.
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The number of C++ programs

Recall from preceding lectures:

Every C++ program is a piece of text (sequence of ascii symbols).
Every C++ program is a word over the alphabet of ascii symbols.

The set of words hPi that describe valid C++ programs is countable.

The set of valid C++ programs is countable.
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The existence of undecidable problems

Let us summarize:
There exist uncountably many languages over f0; 1g.
There exist countably many C++ programs.

Immediate consequence

There exist languages that are undecidable.

At first sight, the sheer existence of undecidable problems does not look very threathening to
us:

We know that these problems do exist, but perhaps they are
extremely artificial and contrived, and perhaps they all are
far far far away from real life and from real world applications.

Unfortunately, this is not true:
We will see that lots of important problems are undecidable.
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The diagonal language (1): Definition

Recall our notation on words wi and programs Pi :

Notation

The i-th word in the canonical ordering of f0; 1g� is denoted wi .
The i-th C++ program in the canonical ordering is denoted Pi .

Definition

The diagonal language D is given by
D = fw 2 f0; 1g� j w = wi , and Pi does not accept wg

In other words:
The i-th word wi in the canonical ordering lies in D
if and only if
the i-th C++ program Pi does not accept wi .
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The diagonal language (2): Intuition

Where does the name “diagonal language” come from?
Consider an infinite matrix A with

Ai ;j =

{
1 if Pi accepts the word wj

0 otherwise

Example

w0 w1 w2 w3 w4

P0 0 1 1 0 1 � � �

P1 1 0 1 0 1 � � �

P2 0 0 1 0 1 � � �

P3 0 1 1 1 0 � � �

P4 0 1 0 0 0 � � �
:::

:::
:::

:::
:::

The diagonal language follows the di-
agonal of matrix A:

D = fwi jAi ;i = 0g
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The diagonal language (3): The proof

Theorem

The diagonal language D is undecidable.

Proof:

Let us assume for the sake of contradiction that D is decidable.
Then there exists a C++ program Pi that decides D.

We feed input wi into program Pi , and we distinguish two cases on the resulting
outcome.

Case 1: If wi 2 D, then wi 2 L(Pi ) and hence Pi accepts wi .
But then by definition of D, we have wi =2 D. Contradiction!
Case 2: If wi =2 D, then wi =2 L(Pi ) and Pi does not accept wi .
But then by definition of D, we have wi 2 D. Contradiction!
We conclude that D is undecidable. �
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Complement of diagonal language (1)

Definition

The complement D of the diagonal language is given by
D = fw 2 f0; 1g� j w = wi and Pi does accept wg

Theorem

The complement D of the diagonal language is undecidable.

Proof:

Let us assume for the sake of contradiction that D is decidable.

Then there exists a C++ program P that decides D.
P halts on every input w , and accepts w if and only if w 2 D.

We construct a new C++ program P 0 that uses program P as a sub-program: P 0 first
runs P on the input, and then negates the resulting output of P.

The new C++ program P 0 decides D. Contradiction!
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Complement of diagonal language (2)

Illustration: How to construct program P 0 from program P.

P 0

w

P

accept

reject

accept

reject

The existence of P collides with the undecidability of D.
Since program P 0 does not exist, program P cannot exist.
Hence D is undecidable.
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Sub-program technique (1)

The proof technique from the preceding theorem (that gave us the undecidability of D) can
be summarized as follows:

Sub-program technique for proving undecidability

Let L0 be a known undecidable language.
Let L be a new language under current investigation.

In order to establish the undecidability of L, it is sufficient to show
that by using a sub-program P for deciding language L
we can build a C++ program for deciding language L0.

In the following slides, we provide illustrations for the sub-program technique and apply it to
many example languages.
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Sub-program technique (2)

Observation

If language L � f0; 1g� is undecidable,
then also its complement L is undecidable.

Observation

If language L � f0; 1g� is decidable,
then also its complement L is decidable.



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

Sub-program technique (2)

Observation

If language L � f0; 1g� is undecidable,
then also its complement L is undecidable.

Observation

If language L � f0; 1g� is decidable,
then also its complement L is decidable.



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The halting problem (1)

The halting problem asks us to decide,
whether a given C++ program halts on a given input.

Definition

The halting problem H is given by H = fhPiw j P halts on wg.

It would be great, if a C++ compiler could decide the halting problem.
However: We will see that H is undecidable.
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The halting problem (2)

Theorem

The halting problem H is undecidable.

Proof idea (The details are on the following slides):
We apply the sub-program technique.

Suppose for the sake of contradiction that there exists a C++ program PH that decides
H: PH halts on each input, and it only accepts inputs of the form hPiw , for which P
halts on w .

We construct a new C++ program PD that uses PH as a sub-program and that decides
D.

This contradicts the undecidability of D,
and hence implies the non-existence of the C++ program PH .



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The halting problem (2)

Theorem

The halting problem H is undecidable.

Proof idea (The details are on the following slides):
We apply the sub-program technique.

Suppose for the sake of contradiction that there exists a C++ program PH that decides
H: PH halts on each input, and it only accepts inputs of the form hPiw , for which P
halts on w .

We construct a new C++ program PD that uses PH as a sub-program and that decides
D.

This contradicts the undecidability of D,
and hence implies the non-existence of the C++ program PH .



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The halting problem (2)

Theorem

The halting problem H is undecidable.

Proof idea (The details are on the following slides):
We apply the sub-program technique.

Suppose for the sake of contradiction that there exists a C++ program PH that decides
H: PH halts on each input, and it only accepts inputs of the form hPiw , for which P
halts on w .

We construct a new C++ program PD that uses PH as a sub-program and that decides
D.

This contradicts the undecidability of D,
and hence implies the non-existence of the C++ program PH .



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The halting problem (2)

Theorem

The halting problem H is undecidable.

Proof idea (The details are on the following slides):
We apply the sub-program technique.

Suppose for the sake of contradiction that there exists a C++ program PH that decides
H: PH halts on each input, and it only accepts inputs of the form hPiw , for which P
halts on w .

We construct a new C++ program PD that uses PH as a sub-program and that decides
D.

This contradicts the undecidability of D,
and hence implies the non-existence of the C++ program PH .



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1a)

The C++ program PD with sub-program PH :

(1) For input w , first determine the index i with w = wi

(2) Next determine the i-th program hPi i in canonical ordering

(3) Call sub-program PH on the input hPi iwi .

(3a) If PH rejects, then reject the input.

(3b) If PH accepts, then simulate the behavior of program Pi on input wi (with a C++
emulator written in C++)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1a)

The C++ program PD with sub-program PH :

(1) For input w , first determine the index i with w = wi

(2) Next determine the i-th program hPi i in canonical ordering

(3) Call sub-program PH on the input hPi iwi .

(3a) If PH rejects, then reject the input.

(3b) If PH accepts, then simulate the behavior of program Pi on input wi (with a C++
emulator written in C++)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1a)

The C++ program PD with sub-program PH :

(1) For input w , first determine the index i with w = wi

(2) Next determine the i-th program hPi i in canonical ordering

(3) Call sub-program PH on the input hPi iwi .

(3a) If PH rejects, then reject the input.

(3b) If PH accepts, then simulate the behavior of program Pi on input wi (with a C++
emulator written in C++)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1a)

The C++ program PD with sub-program PH :

(1) For input w , first determine the index i with w = wi

(2) Next determine the i-th program hPi i in canonical ordering

(3) Call sub-program PH on the input hPi iwi .

(3a) If PH rejects, then reject the input.

(3b) If PH accepts, then simulate the behavior of program Pi on input wi (with a C++
emulator written in C++)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1a)

The C++ program PD with sub-program PH :

(1) For input w , first determine the index i with w = wi

(2) Next determine the i-th program hPi i in canonical ordering

(3) Call sub-program PH on the input hPi iwi .

(3a) If PH rejects, then reject the input.

(3b) If PH accepts, then simulate the behavior of program Pi on input wi (with a C++
emulator written in C++)



Introduction Countable Sets Basics of Computability Undecidability Theorem of Rice

Martin Hoefer WS24/25

The full proof (1b)

Illustration: How to construct program PD from program PH .

PD

w hPi iwi

accept accept

reject

reject

PH
U

i with
wi = w

The existence of PD collides with the undecidability of D.
Hence program PH does not exist.
Hence the halting problem H is undecidable.
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The full proof (2)

It remains to show that our new program PD indeed works correctly.

For the correctness we need to show:

A. w 2 D ) PD accepts w

B. w 62 D ) PD rejects w
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The full proof (3)

Let w = wi .

w 2 D ) Pi accepts wi

) PH and U accept hPi iwi

) PD accepts w

) Part A is done

w 62 D ) Pi does not accept wi

) (Pi does not halt on wi ) or (Pi rejects wi )

) (PH rejects hPi iwi ) or (PH accepts and U rejects hPi iwi )

) PD rejects w

) Part B is done
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The Epsilon-halting problem

Definition

The Epsilon-halting problem H� is given by
H� = fhPi j P halts on the empty input � g

Theorem

The Epsilon-halting problem H� is undecidable.

Proof idea: We apply the sub-program technique.
With the help of a C++ sub-program P� that decides H�, we construct a new C++ program
PH , that decides the undecidable halting problem H.
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The proof (1a)

The new C++ program PH with sub-program P� works as follows:

(1) If the input is not of the form hPiw , then PH rejects.

(2) Otherwise the input is of the form hPiw , and we formulate a new C++ program P�
w with

the following properties:

If P�

w receives the input � then it simulates the behavior of C++ program P on
input w .

For inputs that are not �, the behavior of P�

w is irrelevant; for instance, we may
assume that it halts right away.

(3) Now PH simulates program P� on the input hP�
w i.

PH accepts/rejects exactly if P� accepts/rejects.
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The proof (1b)

Illustration: How to construct program PH from program P�.

PH

x hPi;w

accept

reject

reject (syntax error)

P"
hPi and w

with
x = hPiw

hP�
w i

The existence of PH collides with the undecidability of PH .
Hence program P� does not exist.
Hence the Epsilon-halting problem H� is undecidable.
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The proof (2)

We show next that our new program PH indeed works correctly.

If the input x is not of the form x = hPiw ,
then PH rejects the input (and behaves correctly)

Hence we assume that x = hPiw

For the correctness we need to show:

A. hPiw 2 H ) PH accepts hPiw

B. hPiw =2 H ) PH rejects hPiw
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The proof (3)

hPiw 2 H ) P halts on input w

) P�
w halts on input �

) P� accepts hP�
w i

) PH accepts hPiw

) Part A is done

hPiw 62 H ) P does not halt on input w

) P�
w does not halt on input �

) P� rejects hP�
w i

) PH rejects hPiw

) Part B is done
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Undecidable versus decidable (1)

We have seen that the following problems are undecidable:

Given hPi and w , does P halt on input w?

Given hPi, does P halt on input �?

Analogous arguments show that the following problems are undecidable:

Exercise

Given hPi and w , does w 2 L(P) hold?

Given hPi, does " 2 L(P) hold?

Given hPi, does hPi 2 L(P) hold?

Given hPi, is L(P) empty?

Given hPi, is L(P) = Σ�?

Given hPi, is L(P) finite?

Given hPi, is L(P) regular?

Given hPi, is L(P) context-free?
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Undecidable versus decidable (2)

On the other hand, the following problems are decidable:

Given hPi, is L(P) � Σ�?

Given hPi, is L(P) recognized by some C++ program?

Given hPi, does P use an even number of variables?

Given hPi, does hPi have even length?

Given hPi, is P a Java program?
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Partial functions

In general, C++ programs will not halt for every input. They compute so-called partial
functions, which are formalized as follows:

A C++ program P computes a function of the form

fP : f0; 1g� ! f0; 1g� [ f?g

The symbol ? stands for “undefined” which means that the program does not halt.

In the case of decision problems the function is of the form

fP : f0; 1g� ! f0; 1;?g

Here 0 stands for “reject, while 1 stands for “accept”, and ? stands for “does-not-halt”.
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Theorem of Rice

Theorem

Let R be the set of partial functions computable by C++ programs.
Let S be some subset of R with ; ( S ( R.

Then the language

L(S) = fhPi j P computes a function in Sg

is undecidable.

In other words: All non-trivial statements on functions computed by C++ programs are
undecidable.
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Application (1)

Example 1

Let S = ffP j fP(�) 6= ?g.

Then

L(S) = fhPi j P computes a function in Sg

= fhPi j P halts on input �g

= H�

The theorem of Rice yields that the Epsilon-halting problem H� is undecidable. (But we
already knew about that...)

R
S
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Application II

Example 2

Let S = ffP j 8w 2 f0; 1g� : fP(w) 6= ?g.

Then

L(S) = fhPi j P computes a function in Sg

= fhPi j P halts on every inputg

This language is also known as the total halting problem Htot .

The theorem of Rice yields that Htot is undecidable.

R

S
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Application (3)

Example 3

Let S = ffP j 8w 2 f0; 1g� : fP(w) = 1g.

Then

L(S) = fhPi j P computes a function in Sg

= fhPi j P halts on every input with output 1g

The theorem of Rice yields that L(S) is undecidable.

R

S = f1g
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Proof of Rice (0)

Here is once again the statement of the theorem of Rice:

Theorem

Let R be the set of partial functions computable by C++ programs.
Let S be some subset of R with ; ( S ( R.

Then the language

L(S) = fhPi j P computes a function in Sg

is undecidable.
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Proof of Rice (1)

We apply the sub-program technique: With the help of a C++ program PL(S) that decides
L(S), we will construct a new C++ program P� that decides the (undecidable) Epsilon-halting
problem H�.
Let us first agree on the following:

Let u be the nowhere defined function u(w) � ?.

Without loss of generality we assume u 62 S.

Let f be a function in S.

Let Qf be a program that computes f .

R

u
f

S

Remark: In the case u 2 S, we simply consider R n S instead of S, and show the undecidability of
L(R n S). This implies the undecidability of L(S).
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Proof of Rice (2a)

The new C++ program P� with sub-program PL(S) works as follows:

(1) If the input is not of the form hPi,
then P� rejects the input right away

(2) Otherwise the input is of the form hPi, and we formulate a new C++ program P� shown
below

(3) Finally we run PL(S) on the input hP�i.
We accept/reject exactly if PL(S) accepts/rejects.

Behavior of program P� on input x

Phase A: Simulate the behavior of P on input �

Phase B: Simulate the behavior of Qf on input x .
Halt as soon as Qf halts, and pass on the output.
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Proof of Rice (2b)

P"

w w =hPi hP�i

reject (syntax error)

PL(S)

Is w a
C++

program?

accept

reject

P�

x f (x)
P Qf

"
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Proof of Rice (3)

For an input w = hPi we have:

w 2 H� ) P halts on input �

) P� computes f

) hP�i 2 L(S) (as f 2 S holds)

) PL(S) accepts hP�i

) P� accepts w

w 62 H� ) P does not halt on input �

) P� computes u

) hP�i 62 L(S) (as u 62 S holds)

) PL(S) rejects hP�i

) P� rejects w
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Fatal consequences of Rice’s theorem

There is no algorithmic method (manual or automated)
that would be able to determine whether a given C++ program
satisfies any (non-trivial) specification.

Analogous statements hold
for all other higher programming languages, as for instance
Java, Pascal, Python, FORTRAN, Algol, LISP, COBOL, etc.

Analogous statements hold
for all programming languages that will be designed in the future
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Application (4)

Example 4

Let L17 = fhPi j On input 17, program P outputs the number 42g.

Then L17 = L(S) for S = ffP j fP(bin(17)) = bin(42)g.

As ; ( S ( R, Rice implies that L17 is undecidable.
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Application (5)

Example 5

Let L44 = fhPi j there exists a word w , so that on input w the program P executes the
statement in line 44 at least once g.

Rice has no consequences for this language.

Question: Is L44 decidable?
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Application (6)

Example 6

Let LD = fhPi j P decides the diagonal languageg.

Then LD = L(S) for S = ffDg with

fD(w) =

{
1 if w 2 D

0 otherwise.

Rice has no consequences for this language!

But: This language is decidable, as LD = fg.

R
S = ffDg
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