Some computability exercises:

- Suppose L_1 and L_2 are decidable. Show that the complement of the intersection (i.e., $\overline{L_1 \cap L_2}$) is decidable.
- Use the Theorem of Rice to show that the following language is undecidable:

 $L = \{ \langle P \rangle : \text{If } P \text{ halts, it outputs a word from } \{0, 00, 000, 0000, \ldots \} \}$

• Show that the following language is undecidable (via Theorem of Rice or direct reduction):

 $L = \{ \langle P \rangle : P \text{ accepts at least one word of odd length} \}$

• Use the Theorem of Rice to show that the following language is undecidable:

 $L = \{ \langle P \rangle : P \text{ halts for no input word with } |w| = 5 \}$

• Prove or disprove the decidability of the following language:

 $L = \{ \langle P \rangle : P \text{ accepts all words of length at most } 3 \}$

- Suppose $L_3 = L_1 \cap L_2$ such that $L_3 \neq \emptyset$. L_1 is decidable, L_2 is not decidable. Is L_3 always decidable?
- Which of the following five languages L are undecidable?
 - $-L = \Sigma^*$
 - $-L = \{a_1 \dots a_n \in \Sigma^* \mid n \in \mathbb{N} \text{ and } a_1 + \dots + a_n = 9\}$
 - $-L = \{ \langle P \rangle w \mid P \text{ halts with input } w \text{ after at most } |w|^2 \text{ steps } \}$
 - $-L = \{ \langle P \rangle w \mid P \text{ halts with input } w \text{ after at least } |w|^2 \text{ steps } \}$
 - $-L = \{ \langle P \rangle \mid P \text{ outputs 1 for each } w \text{ that represents some } n \in \mathbb{N} \text{ in binary encoding} \}$
- Which of the following statements are true for all languages L, L'?
 - If L is decidable, then \overline{L} is recognizable.
 - If there is a reduction $L \leq L'$ and L' is decidable, then L is decidable.
 - If $L \subseteq L'$ and L' is decidable, then L is decidable as well.
 - If $L \subseteq L'$ and L is undecidable, then L' is undecidable as well.
- We are given a chain of reductions $L_1 \leq L_2 \leq \ldots \leq L_{k-1} \leq L_k$. Suppose $L_{k/2}$ is undecidable. What can you say about $L_{k/2+1}, \ldots, L_k$? What about $L_1, \ldots, L_{k/2-1}$?