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Congestion Games (Rosenthal 1973)

A congestion game is a tuple Γ = (N ,R, (Σi)i∈N , (dr)r∈R) with
▶ N = {1, . . . , n}, set of players
▶ R = {1, . . . ,m}, set of resources
▶ Σi ⊆ 2R, strategy space of player i
▶ dr : {1, . . . , n} → Z, delay function of resource r

For any state S = (S1, . . . , Sn) ∈ Σ1 × · · ·Σn,
▶ nr = number of players with r ∈ Si

▶ dr(nr) = delay of resource r

▶ δi(S) =
∑

r∈Si
dr(nr) = delay of player i

The cost of player i in state S is ci(S) = δi(S), that is, players aim at
minimizing their delays.
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Example: Network Congestion Games

▶ Given a directed graph G = (V,E). Every edge e ∈ E has a delay function
de : {1, . . . , n} → Z.

▶ Player i wants to allocate a path of minimal delay between a source si and
a target ti.
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1,9,9
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s t

▶ In this example, N = {1, 2, 3}, R = E, Σi = set of s-t paths.
▶ This game is symmetric: All players have the same set of strategies. In

any state S, if we permute the strategy choices of the players, the
resulting player costs also get permuted similarly.
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Example: Network Congestion Games

A sequence of (best reply) improvement steps: First step ...
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Example: Network Congestion Games

... second step ...
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Example: Network Congestion Games
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Example: Network Congestion Games

... third step ...
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Pure Nash Equilibrium – stop!
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Example: Network Congestion Games
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Questions

▶ Does every congestion game have a pure Nash equilibrium?

▶ Is every sequence of improvement steps finite?

▶ How many steps are needed to reach a (pure) Nash equilibrium?

▶ What is the complexity of computing (pure) Nash equilibria in congestion
games?
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Finite Improvement Property

Theorem (Rosenthal 1973)
For every congestion game, every sequence of improvement steps is finite.

This result immediately implies
Corollary
Every congestion game has at least one pure Nash equilibrium.

Rosenthal’s analysis is based on a potential function argument.
For every state S, let

Φ(S) =
∑
r∈R

nr(S)∑
k=1

dr(k) .

This function is called Rosenthal’s potential function.
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Proof of Rosenthal’s Theorem

Lemma: Let S be any state. Suppose we go from S to a state S′ by an
improvement step of player i decreasing his delay by ∆ > 0. Then
Φ(S′) = Φ(S)−∆.

1 2 3 4 5

dr(k)

1 2 3 4 5 6

dr′(k)

In the picture, the value of the potential is the shaded area. If a player changes
from r′ to r, his delay changes exactly as the potential value.
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Proof of Rosenthal’s Theorem

Lemma: Let S be any state. Suppose we go from S to a state S′ by an
improvement step of player i decreasing his delay by ∆ > 0. Then
Φ(S′) = Φ(S)−∆.

Proof:
▶ The potential Φ(S) can be calculated by inserting the agents one after the

other in any order, and summing the delays of the players at the point of
time at their insertion.

▶ W.l.o.g., agent i is the last player that we insert when calculating Φ(S).
For this agent i we add his actual delay in state S to the potential Φ(S).

▶ When going from S to S′, the delay of i decreases by ∆, and, hence, Φ
decreases by exactly ∆ as well. (Lemma)
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Proof of Rosenthal’s Theorem

The lemma shows that Φ is an exact potential, i.e., if a single player decreases
its latency by a value of ∆ > 0, then Φ decreases by exactly the same amount.

Further observe that
i) the delay values are integers so that, for every improvement step, ∆ ≥ 1,
ii) for every state S, Φ(S) ≤

∑
r∈R

∑n
i=1 |dr(i)|,

iii) for every state S, Φ(S) ≥ −
∑

r∈R
∑n

i=1 |dr(i)|.

Consequently, the number of improvements is upper-bounded by
2 ·

∑
r∈R

∑n
i=1 |dr(i)| and hence finite. (Theorem)
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Potential Games

Definition (Potential Game)
A strategic game Γ = (N , (Σi)i∈N , (ci)i∈N ) is called exact potential game if
there exists a function Φ: Σ → R such that for every i ∈ N , for every
S−i ∈ Σ−i, and every Si, S

′
i ∈ Σi:

ci(Si, S−i)− ci(S
′
i, S−i) = Φ(Si, S−i)− Φ(S′

i, S−i) .

Φ is called an exact potential function.

Observation
Let Γ = (N , (Σi)i∈N , (ci)i∈N ) be an exact potential game. Then Γ has the
finite improvement property and, hence, there exists a state that is a (pure)
Nash equilibrium.

Martin Hoefer Algorithmic Game Theory 2024/25
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Congestion versus Potential Games

It follows from Rosenthal’s potential function that

Corollary
Every congestion game is an exact potential game.

In some sense, the reverse is true as well.

Theorem (Monderer and Shapley, 1996)
Every exact potential game is “isomorphic” to a congestion game.

For every exact potential game, there is another game with the same players,
strategies, and costs. The other game uses appropriate resources and delays
such that strategies become subsets of resources and costs become sums over
resource delays. In this way, one can provide a representation of the potential
game as an “isomorphic” congestion game.
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Main Question

How many improvement steps are needed to reach
a pure Nash equilibrium?
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Transition Graph

▶ The transition graph of a congestion game Γ contains a vertex for every
state S and a directed edge (S, S′) if S′ can be reached from S by an
improvement step of a single player.

▶ The best-response transition graph contains only edges for best response
improvement steps.

A sequence of (best response) improvement steps corresponds to a path in the
(best response) transition graph.

The sinks of this graph are the Nash equilibria of Γ.

The number of vertices (states) can be as large as 2mn. Thus there might be
paths of exponential length.

Martin Hoefer Algorithmic Game Theory 2024/25
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Singleton Congestion Games – Definition

Definition (Singleton Congestion Game)
A congestion game is called singleton if, for every i ∈ N and every R ∈ Σi, it
holds that |R| = 1.

In a singleton game, every player wants to allocate exactly one single resource
from a subset of allowed resources.

Although this constraint on the strategy sets is quite restrictive, there are still
up to mn different states.

Martin Hoefer Algorithmic Game Theory 2024/25
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Singleton Congestion Games – Example

Consider a “server farm” with three servers a, b, c (resources) and three players
1,2,3. Each player has a single task that needs to be processed by one of the
servers. The player chooses the server strategically to minimize the completion
time.

1 2 3

20

1630
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15
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Nash equilibrium
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Singleton Congestion Games – Convergence

Theorem
In singleton congestion games, every improvement sequence has a length of
O(n2m).

Proof idea:
▶ Replace original delays by bounded integer values without changing the

preferences of the players.
▶ This yields an upper bound on the maximum potential wrt new delays.
▶ Due to integer values, the decrease of the potential in an improvement

step is at least 1. Hence, the length of every improvement sequence is
bounded by the maximum value of the potential.
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Proof for Singleton Games

Sort the set of delay values {dr(k) | r ∈ R, 1 ≤ k ≤ n} in increasing order. We
define alternative, new delay functions:

d̄r(k) := position of dr(k) in sorting.

Example:
The sorted set of delay values from the previous example is

15, 16, 17, 20, 30, 50, 70, 90.

Hence, the old and new delay functions are
da(1, 2, 3) = (20, 30, 50) d̄a(1, 2, 3) = (4, 5, 6)
db(1, 2, 3) = (30, 70, 90) d̄b(1, 2, 3) = (5, 7, 8)
dc(1, 2, 3) = (15, 16, 17) d̄c(1, 2, 3) = (1, 2, 3)

The new delay of a player i using resource r in state S is δ̄i(S) = d̄r(nr(S)).

Martin Hoefer Algorithmic Game Theory 2024/25
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Proof for Singleton Games

Observation:
Let S and S′ be two states such that (S, S′) is an improvement step for some
player i w.r.t. the originial delays. Then (S, S′) is an improvement step for i
w.r.t. the new delays, as well.

Rosenthal’s potential function w.r.t. the new delays can be upper bounded as
follows:

Φ̄(S) =
∑
r∈R

nr(S)∑
k=1

d̄r(k) ≤
∑
r∈R

nr(S)∑
k=1

nm ≤ n2 m .

It holds that Φ̄ ≥ 1. Also, Φ̄ decreases by at least 1 in every step. Therefore,
the length of every improvement sequence is at most n2m. (Theorem)
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Fast Convergence to Pure Equilibria?

For singleton games we showed that every improvement sequence has a
length that is polynomial in n and m. This bound holds for every arbitary
sequence, as long as the moving player strictly decreases his cost (not only
sequences of best responses).

This result can be generalized to so-called matroid games. In these games,
every player has a strategy set that corresponds to the bases of a matroid over
the set of resources. In these games, it can be shown that sequences of best
responses have a length that is polynomial in n and m.

In general, however, there is for every n ∈ N at least one congestion game with
▶ O(n) players und O(n) resources,
▶ non-negative, monotone delays, und
▶ an initial state S

such that every improvement sequence from S to a pure Nash equilibrium
has a length that is exponential in n.

Martin Hoefer Algorithmic Game Theory 2024/25
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We investigate the complexity of finding Nash equilibria in different kinds of
congestion games.

Our study is restricted to congestion games with non-decreasing delay
functions.

Martin Hoefer Algorithmic Game Theory 2024/25
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Symmetric Network Congestion Games

▶ Given a directed graph G = (V,E) with delay functions
de : {1, . . . , n} → Z, e ∈ E.

▶ Player i wants to allocate a path of minimal delay between a source s and
a target t.

1,2,9

4,5,6
1,2,3

1,9,9

7,8,9

s t

▶ In more general asymmetric network congestion games, different players
might have different source-destination pairs.
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Symmetric Network Congestion Games

▶ It is known that there are instances of symmetric network congestion
games in which there are states such that every improvement sequence
from this state to a Nash equilibrium has exponential length.

▶ Hence, applying improvement steps is not an efficient (i.e. polynomial
time) algorithm for computing Nash equilibria in these games.

▶ However, there is another algorithm which finds Nash equilibria in
polynomial time ...

Martin Hoefer Algorithmic Game Theory 2024/25
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Complexity in Symmetric Network Congestion Games

Efficient algorithm via a reduction to min-cost flow:
(Fabrikant, Papadimitriou, Talwar 2004)
▶ Each edge is replaced by n parallel edges of capacity 1 each.
▶ The ith copy of edge e has cost de(i), 1 ≤ i ≤ n.

1,2,3

7,8,9

1,9,9

4,5,6

1,2,9

s t

▶ We compute a min-cost-flow, i.e., a network flow of value n from s to t
that minimizes the total cost of the edge copies that are used.

▶ Optimal solution minimizes Rosenthal’s potential function and, hence, is a
pure Nash equilibrium.

Martin Hoefer Algorithmic Game Theory 2024/25
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Relationship to Local Search

Rosenthal’s potential function allows us to interpret congestion games as local
search problems:

Nash equilibria are local optima w.r.t. the potential function.

How difficult is it to compute local optima?

Martin Hoefer Algorithmic Game Theory 2024/25
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The complexity class PLS

Definition (PLS (Polynomial Local Search))
PLS contains search problems with an objective function and a specified
neighborhood relationship Γ. It is required that there is a poly-time algorithm
that, given any solution s,
▶ computes a solution in Γ(s) with better objective value, or
▶ certifies that s is a local optimum.

Some examples for problems in PLS
▶ FLIP (circuit evaluation with Flip-neighborhood)
▶ TSP with 2-Opt-neighborbood
▶ Pos-NAE-kSat with Flip-neighborhood
▶ Max-Cut with Flip-neighborhood
▶ Congestion games w.r.t. improvement steps

Martin Hoefer Algorithmic Game Theory 2024/25
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Max-Cut – Definition

Input:
A graph G = (V,E) with edge weights w : E → N.

▶ A cut partitions V into two sets Left and Right.
▶ Two cuts are neighboring if one can obtain one from the other by moving

only one vertex from Left to Right or vice versa.
▶ The value of a cut is the weighted number of edges with one endpoint in

Left and one endpoint in Right.

Task:
Find a local optimum, i.e., a cut without neighboring cut of higher value.

Fact:
Max-Cut is PLS-complete.

Martin Hoefer Algorithmic Game Theory 2024/25
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The Complexity Class PLS

Definition (PLS-reduction)
Given two PLS problems Π1 and Π2 find a mapping from the instances of Π1

to the instances of Π2 such that
▶ the mapping can be computed in polynomial time,
▶ the local optima of Π1 are mapped to local optima of Π2, and
▶ given any local optimum of Π2, one can construct a local optimum of Π1

in polynomial time.

Martin Hoefer Algorithmic Game Theory 2024/25
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Complexity of Pure Equilibria in Congestion Games

Theorem (Fabrikant, Papadimitriou, Talwar 2004)
The complexity of pure Nash equilibria in congestion games is characterized as
follows:

network games general games

symmetric ∃ poly-time Algo PLS-complete

asymmetric PLS-complete PLS-complete

We discuss one of these PLS-completeness proofs, the one for general,
asymmetric congestion games.

Martin Hoefer Algorithmic Game Theory 2024/25
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PLS-Hardness for General Congestion Games

We prove a PLS-reduction from Max-Cut to congestion games.

First of all, we observe that Max-Cut can be represented as a game:

Party Affiliation Game (Max-Cut)
Players correspond to vertices in a weighted graph G = (V,E).
▶ Every player has 2 strategies: left or right.
▶ A state of the game yields a cut, i.e., a partition of V into left and right

vertices.
▶ Edge weights represent antisympathy among players.
▶ Players choose a strategy to maximize the sum of weights of incident

edges crossing the cut.
▶ Pure Nash equilibria correspond to local optima of Max-Cut.

Martin Hoefer Algorithmic Game Theory 2024/25
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PLS-Hardness for General Congestion Games

Minimization Variant of the Party Affiliation Game
The strategies of a vertex are
▶ left: choose the left hand side of the cut
▶ right: choose the right hand side of the cut

The costs for these strategies are
▶ left: sum of the weights of the incident edges to the left
▶ right: sum of the weights of the incident edges to the right

Both games have the same transition graph:
For each player, minimizing the weights of incident edges on “her side”, is
equivalent to maximizing the sum of edges leading to the “other side”.

Martin Hoefer Algorithmic Game Theory 2024/25
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PLS-Hardness for General Congestion Games

Now the minimization variant can be described in terms of a congestion game.

Party Affiliation Congestion Game:
▶ Represent each edge e by two resources eleft, eright with delay functions

d(1) = 0 and d(2) = we.
▶ For each player the strategy Sleft contains resources eleft for all incident

edges; strategy Sright contains resources rright for all incident edges.

Players in this congestion game have exactly the same cost as players in the
minimization variant of the party affiliation game.

Hence, the pure Nash equilibria of this congestion game coincide with local
optima of the Max-Cut instance. Hence, we obtain a PLS-reduction from
Max-Cut to congestion games. (PLS completeness)

Martin Hoefer Algorithmic Game Theory 2024/25
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Potential Games

An exact potential implies the finite improvement property and, thus, the
existence of a pure Nash equilibrium. The definition of potential game can be
made much more general without losing the finite improvement property.

Definition (Ordinal Potential Game)
A strategic game Γ = (N , (Σi)i∈N , (ci)i∈N ) is called an ordinal potential game
if there exists a function Φ: Σ → R such that for every i ∈ N , for every
S−i ∈ Σ−i, and every Si, S

′
i ∈ Σi:

ci(Si, S−i) > ci(S
′
i, S−i) ⇒ Φ(Si, S−i) > Φ(S′

i, S−i) .

Φ is called an ordinal potential function.

Observation:
Let Γ be an ordinal potential game. Then Γ has the finite improvement
property, and, hence, a pure Nash equilibrium.

Martin Hoefer Algorithmic Game Theory 2024/25
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Stable Matching

( , , )

( , , )

( , , )

( , , )

( , , )

( , , )
Every person has a preference list (left/right is most/least preferred). No

polygamy – at most one match per person.

Martin Hoefer Algorithmic Game Theory 2024/25
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Stable Matching

▶ Set X of men, set Y of women

▶ We denote their numbers by m = |X | and n = |Y|

▶ Each x ∈ X has a preference order ≻x over all matches y ∈ Y.

▶ Each y ∈ Y has a preference order ≻y over all matches x ∈ X .

▶ For each person being unmatched is the least preferred state, i.e., each
person wants to be matched rather than unmatched.

▶ For matching M let M(x) ∈ Y be the match of man x ∈ X in M ,
similarly let M(y) be the match of woman y ∈ Y.

▶ Let M(x) = ∗ if x is unmatched in M . Similar for M(y) = ∗.

Martin Hoefer Algorithmic Game Theory 2024/25
Pure Nash Equilibria
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Stable Matching
When is a matching stable? What is a hazard to stability?

▶ In a matching M , a pair {x, y} is blocking
pair if and only if x and y prefer each
other to y′ = M(x) and x′ = M(y),
respectively.

▶ M is a stable matching if and only if it
admits no blocking pair.

x′ y

x y′

Stable matching is a central concept in many applications.
Residents/Hospitals College Admission Job Market etc.

Martin Hoefer Algorithmic Game Theory 2024/25
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Stable Matching as Strategic Game

We interpret the model as a strategic game:

▶ Players are the men X . The strategy set of a man x ∈ X is the set of
women Σx = Y. A man picks a woman as strategy and “proposes to her”.

▶ We express preference order by costs: Every match {x, y} yields cost
values cx(y) > 0 and cy(x) > 0 for the involved agents, which satisfy

cx(y) > cx(y
′) ⇔ y′ ≻x y ,

cy(x) > cy(x
′) ⇔ x′ ≻y x ,

cy(∗) = cx(∗) = ∞ für alle x ∈ X , y ∈ Y.

Martin Hoefer Algorithmic Game Theory 2024/25
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Stable Matching as Strategic Game

▶ In a state S every man x ∈ X chooses a woman yx ∈ Y. In S every
woman y ∈ Y receives a (possibly empty) set Ay(S) of proposals.

▶ A match emerges only when x∗
y = argmin{cy(x) | x ∈ Ay(S)}, i.e., y

matches to the man from Ay(S) that she likes best.

▶ In S man x obtains cost cx(S) = cx(MS(x)), where MS(x) is his match
in state S (Note: MS(x) = ∗ is possible).

Observation:
A state S in the game is a pure Nash equilibrium

⇔ The matching MS is a stable matching.
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Representation with Costs

(12, 19, 20)

(14, 16, 18)

(22, 23, 28)

(16, 20, 22)

(12, 14, 23)

(18, 19, 28)
In this instance the preference orders can be represented by correlated cost values.
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Correlated Preferences

An intuitive case of matching is when both players receive the same cost from
a match. Then each match has a single positive edge cost, and this cost is
assigned to both players if they match along this edge. This is referred to as
correlated or weighted matching.

In a correlated matching game, we have cx(y) = cy(x) = c(x, y) for all x ∈ X
and y ∈ Y, and cx(∗) = cy(∗) = ∞.

Preferences are now correlated among agents – the smaller the edge cost, the
better the match for both partners.
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Correlated Matching: Ordinal Potential Game

Theorem
Every correlated matching game is an ordinal potential game. If all edge costs
are pairwise distinct, the pure Nash equilibrium is unique.

Proof:
For a state S, define the following function

Φ(S) = (cx1(S), . . . , cxn(S)),

where the men are sorted in non-decreasing order of cost, i.e., for i ≤ j it holds
cxi(S) ≤ cxj (S). This is a lexicographic potential.
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Example

1

2

3

A

B

C

23

18

20

S0
A = 2

S0
B = 1

S0
C = 3

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23

S1 14, 20, ∞
S2 12, 18, ∞
S3 12, 18, 22
S4 12, 16, ∞
S5 12, 16, 28

pure NE
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Example

1

2

3

A

B

C

14

20

S1
A = 2

S1
B = 2

S1
C = 3

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23
S1 14, 20, ∞

S2 12, 18, ∞
S3 12, 18, 22
S4 12, 16, ∞
S5 12, 16, 28

pure NE
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Example

1

2

3

A

B

C

12

18 S2
A = 2

S2
B = 3

S2
C = 3

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23
S1 14, 20, ∞
S2 12, 18, ∞

S3 12, 18, 22
S4 12, 16, ∞
S5 12, 16, 28

pure NE
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Example

1

2

3

A

B

C

12

18

22

S3
A = 2

S3
B = 3

S3
C = 1

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23
S1 14, 20, ∞
S2 12, 18, ∞
S3 12, 18, 22

S4 12, 16, ∞
S5 12, 16, 28

pure NE
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Example

1

2

3

A

B

C

12

16

S4
A = 2

S4
B = 3

S4
C = 2

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23
S1 14, 20, ∞
S2 12, 18, ∞
S3 12, 18, 22
S4 12, 16, ∞

S5 12, 16, 28
pure NE
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Example

1

2

3

A

B

C
16

12

28
S5

A = 1

S5
B = 3

S5
C = 2

Consider an improvement sequence from state
S0. The sorted vector of player costs
decreases lexicographically in every step.

State Sorted Costs
S0 18, 20, 23
S1 14, 20, ∞
S2 12, 18, ∞
S3 12, 18, 22
S4 12, 16, ∞
S5 12, 16, 28

pure NE
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Correlated Matching: Ordinal Potential Game

Consider man x that deviates from strategy y to y′ and improves strictly. Let S
and S′ be the resulting states. Since x strictly improves, he is matched to
y′ ̸= y in S′. Depending on x and y′ being matched in S, we obtain four cases
(see below).

In every case the smallest cost value added is c(x, y′), and it is strictly smaller
than the smallest cost value removed. Hence, the sorted vector of costs
decreases lexicographically.

1. {x, y} ∈ MS , y′ unmatched in S:
Then cx(S) = c(x, y) > c(x, y′) = cx(S

′). In the sorted vector of costs
c(x, y) is replaced by c(x, y′). If y has another proposal in S beyond x,
then she has a proposal in S′. In this case, for the best man x′′ ∈ Ay(S

′)
in the sorted vector we replace ∞ by c(x′′, y).

Martin Hoefer Algorithmic Game Theory 2024/25
Pure Nash Equilibria



Congestion Games Convergence Time PLS Ordinal, Weakly Acyclic

Correlated Matching: Ordinal Potential Game

2. {x, y} ̸∈ MS , y′ unmatched in S:
Then cx(S) = ∞ > c(x, y′) = cx(S

′). In the sorted vector of costs ∞ is
replaced by c(x, y′).

3. {x, y} ∈ MS , ∃x′ ∈ X with {x′, y′} ∈ MS :
Then cx(S) = c(x, y) > c(x, y′) = cx(S

′). Since {x, y′} ∈ MS′ it holds
c(x′, y′) > c(x, y′). In the sorted vector of costs c(x, y) is replaced by
c(x, y′) and c(x′, y′) is replaced by ∞. If y has another proposal in S
beyond x, then she has a proposal in S′. In this case, for the best man
x′′ ∈ Ay(S

′) in the sorted vector we replace ∞ by c(x′′, y).

4. {x, y} ̸∈ MS , ∃x′ ∈ X with {x′, y′} ∈ MS :
Then cx(S) = ∞ > c(x, y′) = cx(S

′). Since {x, y′} ∈ MS′ it holds
c(x′, y′) > c(x, y′). In the sorted vector of costs ∞ is replaced by c(x, y′)
and c(x′, y′) is replaced by ∞.
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Uniqueness

Now suppose all values c(x, y) are pairwise distinct. Consider pair {x0, y0}
with smallest edge cost. In every state S woman y0 is the unique best respone
for player x0. The match yields smallest cost, and y0 will always accept the
proposal. Hence, x0 must play y0 in every pure Nash equilibrium.

Among the remaining possible pairs again consider the remaining one {x1, y1}
with smallest cost. Conditioned on x0 and y0 being matched, y1 is the unique
best response for player x1. The match yields smallest cost (conditioned on
{x0, y0} being matched), and y1 will accept the proposal. Hence, given that x0

plays y0, we know that x1 must play y1 in every pure Nash equilibrium.

Applied inductively the argument shows uniqueness of the pure Nash
equilibrium.
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Improvement Sequences

The last proof defines an algorithm to build a short improvement sequence: In
every step let the player deviate that obtains the smallest cost by deviating.
Then x0 first deviates to y0, then x1 to y1 etc. (unless they are already
matched, resp.)

The greedy algorithm applies this strategy to the empty matching and tries to
insert edges in the order of non-decreasing cost. In this way, the greedy
algorithm computes a pure Nash equilibrium in polynomial time.

Corollary
1. For every state S there is an improvement sequence that reaches a pure

Nash equilibrium in at most min{n,m} steps.
2. A pure Nash equilibrium can be computed with a greedy algorithm in time

O(nm log(nm)).

The corollary continues to hold even when the values c(x, y) are not pairwise
distinct. (Why?)
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When preferences are not correlated...

Consider the general class of matching games, where player costs are not
correlated via a single cost value per edge. For simplicity we now assume that
for every player the cost is the position of the partner in the preference order.

Let ≻x= (y1, . . . , yn) be the preference order of man x ∈ X . Then cx(yk) = k
for k ∈ {1, . . . , n} and cx(∗) = n+ 1. The costs cy(x) are given similarly. In
state S we obtain the matching MS as described before and the resulting costs
cx(S) = cx(MS(x)).

When preferences of the agents are not correlated, then there exist matching
games without the finite improvement property. Even when all players must
play best responses, there can be cyclic improvement sequences. Hence, in
particular, there are matching games without an ordinal potential function.

Martin Hoefer Algorithmic Game Theory 2024/25
Pure Nash Equilibria



Congestion Games Convergence Time PLS Ordinal, Weakly Acyclic

Potential Game

Proposition
There are matching games without the finite improvement property.

Consider the following matching game with a cyclic sequence of
(best-response) improvement steps.

( , , )

( , , )

( , , )

( , , )

( , , )

( , , )
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Existence and Computation

While there are cyclic improvement sequences, we always have a pure Nash
equilibrium (i.e., a stable matching)

Algorithm 1: Deferred Acceptance (DA) Algorithm with Man-Proposal
Initialize ≻′

x=≻x for all x ∈ X
while there is an unmatched man x ∈ X with ≻′

x ̸= ∅ do
Every man x ∈ X proposes to topmost woman in ≻′

x

Every woman y ∈ Y keeps most preferred man from Ay(S)
y rejects all other men from Ay(S)
If his current proposal is rejected, man x removes topmost entry from
≻′

x

Theorem (Gale, Shapley 1962)
A stable matching always exists and can be computed in time O(nm).
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Convergence

Proof:
The DA algorithm can be implemented to run in time O(nm). It computes a
matching M , as each man proposes to at most one woman at a time and each
woman keeps at most one proposal.
It is straightforward to verify that over the run of the algorithm
▶ for a man, the preference of proposed women is strictly decreasing, and
▶ for a woman, the preference of matched partners is strictly increasing.

Assume for contradiction M has a blocking pair {x, y} with y ≻x M(x) and
x ≻y M(y). x must have proposed to y and got rejected, so y must keep a
proposal of some better man x′ ≻y x. Hence, her match in M can only be
better than x′. Thus, M(y) ⪰y x′ ≻y x, a contradiction.

A reformulation of this idea implies an even stronger property in matching
games.
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Convergence

Theorem
For every matching game and every initial state S0, there is a sequence of 2nm
best-response improvement steps to a pure Nash equilibrium.

Proof:
The sequence has two phases.

In Phase 1, only matched men are allowed to play best responses. Let X be
the set of matched men in MS . The following function keeps decreasing over
phase 1:

Φ(S) =
∑
x∈X

cx(S) +
∑

x∈X\X

cx(Sx). (rank of x’s partner in ≻x)

Φ(S) sums for each matched man the rank of his partner, and for each
unmatched man the rank of the “virtual” partner, i.e., the rank if he would be
matched to his choice Sx.
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Convergence

Suppose x ∈ X deviates from woman y = Sx to a best response y′.
▶ x remains matched, improves rank of partner by at least 1.
▶ If y is matched to some x′ ∈ X, then x′ becomes unmatched. Cost cx′(y′)

moves from the first sum to the second sum. Value of Φ(S) does not
change because of this.

▶ If y has other offers (i.e., other men pick y as strategy), then y remains
matched after x deviates. Hence, some x′′ ∈ X \X gets matched to y.
Cost term cx′′(y) moves from the second sum to first sum. Value of Φ(S)
does not change because of this.

Thus, Φ drops by at least 1 in every iteration. As 1 ≤ Φ(S) ≤ nm, phase 1
terminates after at most nm iterations.
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Convergence

In Phase 2, only unmatched men are allowed to play best responses. Denote
by Y the set of matched women in MS . The following function keeps
increasing over phase 2:

Ψ(S) =
∑
y∈Y

(n+ 1− cy(S)).

Suppose an unmatched man x deviates to a best response.
▶ x gets matched to y ∈ Y , cy decreases by at least 1.
▶ x gets matched to y ̸∈ Y , y enters Y .

Thus, Ψ grows by at least 1 in every iteration. As 1 ≤ Ψ(S) ≤ nm, phase 2
terminates after at most nm iterations.

Why is the final state a stable matching? Observe that throughout phase 2 no
matched man can improve. When unmatched x gets matched to y, this only
decreases y’s cost. Assuming that there was no blocking pair with any of the
matched men before, there is no blocking pair after x and y are matched – x
played a best response and y’s cost is even lower now. Finally, there are no
improvements of unmatched men (because phase 2 is finished).
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Weakly Acyclic

We proved that matching games are weakly acyclic.

Definition (Weakly Acyclic Game)
A strategic game Γ = (N , (Σi)i∈N , (ci)i∈N ) is weakly acyclic if for every state
S there is at least one finite improvement sequence that leads from S to a pure
Nash equilibrium.

Consider random better-repsonse dynamics: In every step a player i ∈ N is
chosen uniformly at random. He chooses a strategy s′i ∈ Σi uniformly at
random and deviates if s′i represents a strict improvement.

Random better-response dynamics emerge from a Markov chain (more
concretely: a random walk) over the states of the game. Pure Nash equilibria
are the absorbing states.
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Random Dynamics – Convergence in the Limit

In weakly acyclic games random better-response dynamics converge with
probability 1 in the limit to a pure Nash equilibrium. A simple consequence
from pure equilibria being absorbing states – if the dynamics run long enough,
they eventually implement a sequence that leads to (and then remains in) a
pure Nash equilibrium.

How long does it take until we reach a pure Nash equilibrium? What happens
when we also restrict to random best-response dynamics? Unfortunately, there
are games and starting states such that the convergence time to a pure Nash
equilibrium is exponential with high probability.

Theorem (Ackermann, Goldberg, Mirrokni, Röglin, Vöcking 2011)
There is a matching game with n men and n women and an initial state S0

such that, with probability 1− 2−Ω(n), random dynamics starting from S0 need
2Ω(n) steps to reach a stable matching.
This result holds for both random better- and best-response dynamics.
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