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Fair Division

Summary: We first discuss the cake-cutting problem, in which we are given a divisible resource, a.k.a. a
cake, which has to be split among n agents. Each agent has a preference over different pieces, and the goal
is to split the cake among the agents in a fair manner.

We first concentrate on two criteria for fairness: Proportionality and envy-freeness. We discuss their existence
and computational complexity.

We then look into further desirable properties other than fairness; namely, Pareto and Nash optimality.

Subsequently, we also study fair division with indivisible goods. Here multiple items have to be assigned,
but each item can be assigned to at most one agent. We consider relaxations of classical fairness notions
and explore their computation. We also consider efficiency in conjunction with fairness.

Resources:

� Handbook of Computational Social Choice, F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D.
Procaccia, 2016, Cambridge University Press (Chapther 13, Cake Cutting Algorithms).

� Fair Division of Indivisible Goods: A Survey G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. A.
Voudouris https://arxiv.org/pdf/2202.07551.pdf

� Trends in computational social choice. Chapter 12 – Approximation Algorithms and Hardness Results
for Fair Division with Indivisible Goods.

� Tutorial on Recent Advances in Fair Resource Allocation, Rupert Freeman and Nisarg Shah https:

//www.cs.toronto.edu/~nisarg/papers/Fair-Division-Tutorial.pdf

� Further readings in the references.

1 Cake-Cutting

1.1 Setting

We are given a divisible resource, a cake C. It is abstractly represented by the interval [0, 1]. Moreover,
there is a set N = {1, . . . , n} of n agents. A piece of cake is any union of disjoint intervals in C. A piece
of cake is called connected if it is an interval [x, y] ⊆ C. The goal is to partition the cake into n pieces and
assign each of them to a distinct agent, which means that the cake has to be fully allocated.

Definition 1 (Allocation). An allocation A = (A1, . . . , An) is a partition of C into pieces, each of which is
assigned to a unique agent. For each i ∈ N , we denote by Ai the piece received by agent i in the allocation
A. An allocation must be complete, that is, ∪i∈NAi = C.

An allocation A is called simple if each agent receives a connected piece of C, i.e. A is obtained by cutting
C at n − 1 points. The goal is to compute a fair allocation of the cake to the agents. We will later define
what fair means. First, we need to introduce how agents evaluate a piece of cake.
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1.1.1 Agent Valuations

We assume each agent can evaluate any subset of the cake. For this reason, each agent i ∈ N is endowed
of an integrable density function fi : C → R≥0. Therefore, given any agent i ∈ N and any piece of cake
X ⊆ C, the value of agent i for X is given by

vi(X) =

∫
x∈X

fi(x)dx .

We can assume, without loss of generality, that
∫
x∈[0,1]

fi(x)dx = 1, for each agent i ∈ N .

Example 1. In Figure 1 we see an example of a density function of an agent i: fi(x) = x2 − 1
3x + 1

2 and
of the value of the piece X = [ 25 ,

4
5 ].
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(a) Density function of agent i: fi(x) = x2 − 1
3
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(b) Value of piece X = [ 2
5
, 4
5
].

Figure 1: Example of a density function fi and valuation of a piece X.

Properties. Throughout our treatment we assume that the every valuation function vi, for each i ∈ N ,
satisfies the following properties:

� normalized, i.e. vi(C) = 1;
� divisible, i.e. ∀λ ∈ [0, 1] and I = [x, y] ⊆ C there exists z ∈ I such that vi([x, z]) = λ · vi([x, y]);
� additive, i.e. for any pair of disjoints intervals I, I ′ ⊂ C, vi(I ∪ I ′) = vi(I) + vi(I

′);
� non-negative, i.e. for each I ⊆ C, vi(I) ≥ 0.

(a) Divisible. (b) Additive.

Figure 2: Properties of valuations.

Whenever we refer to the value of a piece in a given allocation, we mean the value for the owner !
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1.1.2 Query Complexity

Suppose the density functions of the agents are given as input. They could require infinitely many bits for
representation. In contrast, we study a more reasonable way to access the valuations – by oracle access. We
assume to have a so-called oracle for each agent i that can answer some meaningful questions about vi.

Robertson-Webb model. For each agent i, we assume there exists an oracle that can answer the following
two queries:

� Evali(x, y) returns vi([x, y]);
� Cuti(x, α) returns y such that vi([x, y]) = α.

As a consequence, we evaluate the performance of an algorithm by its query complexity, that is, the number
of queries required during its execution.

1.2 Fairness Criteria

In this section, we introduce some fundamental fairness criteria and discuss their relations.

1.2.1 Definitions

We distinguish between threshold-based and comparison-based criteria. A threshold-based criterion requires
that each agent receives at least some pre-defined value for her piece of cake; a comparison-based criteria
determines the satisfaction of an agent by comparing the piece she receives with the pieces received by the
others.
A very natural threshold value is the proportional share: The value of the entire cake divided by the number

of agents. Formally, the proportional share of agent i is given by PSi =
vi(C)

n . We assumed valuations to be
normalized, which implies that each agent has a proportional share of 1

n .

Definition 2 (Proportionality). An allocation A is called proportional (PROP) if each agent receives at
least her proportional share, that is, ∀i ∈ N it holds

vi(Ai) ≥
1

n
.

Towards comparison-based criteria, a very intuitive one is envy-freeness. It requires that no agent envies any
other agent.

Definition 3 (Envy-freeness). An allocation A is called envy-free (EF) if for each i, j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Example 2. Let us consider a cake-cutting instance with three agents having valuations as depicted in
Figure 3. The allocation A1 = [0, 1/6], A2 = [1/6, 5/6], and A3 = [5/6, 1] is PROP and EF.

1.2.2 Implications

Proposition 1. Any EF allocation is always PROP.

Proof. Let us show the statement for an arbitrary agent i ∈ N . Since A is EF, for each j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Summing up over all j ∈ N we get

n · vi(Ai) ≥
∑
j∈N

vi(Aj)
(1)
= vi (A1 ∪ . . . ∪An)

(2)
= vi(C)

(3)
= 1, and, thus, vi(Ai) ≥

1

n
.

Note that (1) holds because of the additivity of valuations and the fact that the pieces in A are non-
overlapping, (2) because the cake is completely allocated, and (3) because of normalization.
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Figure 3: Example instance with three agents.

Proposition 2. For n = 2, any PROP allocation is always EF.

Proof. Roughly speaking, if an agent receives a piece she values more than half, from her perspective, the
other agent is receiving less than half.
Formally, given i ∈ {1, 2}, by proportionality vi(Ai) ≥ 1

2 and therefore vi(Aj) = vi(C \Ai) ≤ 1
2 ≤ vi(Ai).

1.3 Existence and Computation

Let us discuss the existence and computation of PROP and EF allocations. We start by considering the
simplest scenario with two agents.

1.3.1 Two Agents: The Cut-and-Choose Protocol

For two agents, where PROP⇔ EF, there exists a simple but nonetheless interesting protocol for achieving
both PROP and EF, the so-called CutAndChoose. It works as follows:

Cut: Agent 1 cuts the cake into two pieces of value 1
2 for her.

Choose: Agent 2 selects the piece she prefers the most and agent 1 receives the other.

Theorem 3. The CutAndChoose protocol outputs a proportional (and hence envy-free) allocation.

Proof. Agent 1 receives a piece of value 1
2 for him. Agent 2 select the most preferred piece whose has

necessarily value ≥ 1
2 .

And the query complexity? Only two queries! We only ask y ← Cut1(0,
1
2 ) and Eval2(0, y).

1.3.2 The Dubins-Spainer Protocol – Proportionality with O(n2) Queries

We now turn our attention to the computation of a proportional allocation for n agents. Proportionality is
the easiest criterion to achieve, and several protocols have been proposed. We introduce the Dubins-Spainer
protocol also known as the MovingKnife.
Intuitively, starting from the left-most position 0, we pretend to move a knife along our cake to the right.
Consider the first a point at which the unassigned piece to the left has value of the proportional share to
some remaining agent i. At that point, we cut the cake and assign the piece to i. Then, i is disregarded as
well as the assigned piece of cake. We continue from the current position, move the knife to the right, and
find again the first position where the next agent gets her proportional share.
Formally, let xk ∈ [0, 1] be the position of the knife. The MovingKnife protocol proceeds as follows:
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� During the ℓ-th iteration of the algorithm, the knife is positioned at xk = yℓ−1, where y0 = 0. Then,
xk is slowly (and contiguously) moved to the right.

� The agents are allowed to shout as soon as the piece [yℓ−1, xk] reaches their proportional share. Hence,
whenever there is an agent i such that vi([yℓ−1, xk]) ≥ 1

n agent i shouts; if there exists more than one
such agent we break ties arbitrarily.

� As soon as one agent shouts, that agent receives the piece of cake [yℓ−1, xk] and leaves the protocol,
i.e. N ← N \{iℓ}. Set yℓ = xk. The process repeats on the remaining cake with the remaining agents.
Note, however, that each agent continues to strive for a proportional share of 1/n, where n remains
the original number of agents!

� Finally, when |N |= 1, assign [yℓ, 1] to the unique remaining agent and terminate.

We described the MovingKnife protocol as a contiguous process over the cake. How to implement such a
process in the Robertson-Webb model? At round ℓ, we use Cuti(yℓ−1,

1
n ) for all i ∈ N . Roughly speaking,

we ask all the agents at which point they would shout. By taking the minimum of all these positions, we
know the first shouter and the place to cut.

Example 3. We consider an example run of MovingKnife protocol on the instance depicted in Figure 3.
At the beginning, no agent owns any piece of cake. The protocol starts from the position xk = 0 and asks
every agent where to cut to obtain her proportional share, i.e. Cuti(0, 1/3) for each i ∈ {1, 2, 3}. Since
Cuti(0, 1/3) = 1/9, Cut2(0, 1/3) = 1/3, and Cut3(0, 1/3) = 7/9, agent 1 decleares the smallest value, gets
selected, and receives the piece [0, 1/9]. Agents 2 and 3 remain in the process, and the knife is positioned
in xk = 1/9. Since Cut2(1/9, 1/3) = 4/9 and Cut3(1/9, 1/3) = 7/9, agent 2 receives [1/9, 4/9] and agent 3
receives [4/9, 1].

Theorem 4. The MovingKnife protocol outputs a simple and proportional allocation.

Proof. Simple: The algorithm assigns every agent a contiguous piece of cake.
Proportional: The algorithm assigns every agent (but the last one) a piece with value of the proportional
share. We need to show that (1) it never consumes the entire cake before every agent receives one piece, and
(2) the remaining of the cake is always enough to guarantee the proportional share to the remaining agents.
We prove the following claim: At the beginning of any round ℓ ∈ [n− 1], let C ′ ⊆ C be the remaining of the
cake; if agent i has not received a piece of cake yet, then vi(C

′) ≥ 1/n.
Let Ch = [yh−1, yh] be the piece of cake assigned at the h-th round. Since i has not received the cake, no
such piece has value more than 1/n. Therefore, vi(C

′) = vi(C)−
∑

h<ℓ vi(Ch) ≥ 1− (ℓ− 1)/n ≥ 1/n.
Since the above argument applies also to the agent receiving the last piece, proportionality holds also for
her.

And query complexity? At each step, we ask the remaining agents where we should cut for her proportional
share. Hence, we need

∑n−1
i=1 n− i+ 1 = Θ(n2) queries.

Can we do better?

1.3.3 The Even-Paz Protocol – Proportionality with O(n log n) Queries

We present a recursive protocol. For simplicity, we assume n = 2k for some integer k.

Input: An interval [x, y] and n agents
� If n = 1, then give [x, y] to the agent and terminate;
� else each agent i computes zi such that vi([x, zi]) =

1
2vi([x, y]).

� Select z∗ the n/2-th value zi from the left in [x, y];
� Recruse on [x, z∗] with the left n/2 agents, and on [z∗, y] with the right n/2 agents.

Theorem 5. The Even-Paz protocol returns a proportional allocation.
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Proof idea. Invariant for each recursive call: There is enough cake for the involved players to get at least
their proportional share. By induction, at the last step, only one agent is considered and therefore she
receives her proportional share.

Query complexity: The protocol runs in O(log n) rounds; in every round each agent replies to exactly one
query → O(n log n).

Theorem 6 (Edmonds and Pruhs, 2006). Any proportional protocol needs Ω(n log n) queries in the Robertson-
Webb model.

Therefore the Even-Paz protocol is asymptotically optimal!

1.3.4 Envy-Freeness for Three Agents: The Selfridge-Conway Protocol

We have seen that the CutAndChoose protocol provides an EF allocation for two agents. Around 1960,
Selfridge and Conway (independently) constructed the same algorithm for three agents.

Initialization:

� Agent 1 divides the cake into three equally-valued piecesX1, X2, X3 : v1(X1) = v1(X2) = v1(X3) = 1/3.

� Agent 2 trims the most valuable piece according to v2 to create a tie for the most valuable. For
example, we assume w.l.o.g. that X1 is the most valuable piece for agent 2.

– If v2(X1) > v2(X2) ≥ v2(X3), agent 2 removes X ′ ⊆ X1 such that v2(X1 \ X ′) = v2(X2). We
call the three pieces – one of which is trimmed – cake 1 ({X1 \X ′} ∪X2 ∪X3), and we call the
trimmings (X ′) cake 2.

– If v2(X1) = v2(X2), cake 2 is empty.

Division of cake 1:

� Agent 3 chooses one of the three pieces of cake 1;

� If agent 3 chose the trimmed piece (X1 \X ′), agent 2 chooses between the two other pieces of cake 1.
Otherwise, agent 2 receives the trimmed piece. We call refer to the agent i ∈ {2, 3} that received the
trimmed piece by agent T . The other agent is agent T ;

� Agent 1 receives the remaining piece of cake 1.

Division of cake 2:

� Agent T divides cake 2 into three equally-valued pieces;

� Agents T, 1, T select a piece of cake 2 each, in that order.

For an example, apply the procedure on the instance depicted in Figure 3.

Theorem 7. The Selfridge-Conway protocol outputs an EF allocation for three agents.

Proof. Let us denote cakes 1 and 2 by C1 and C2, respectively.
Observation: The division of C1 is EF. Indeed, agent 1 always receives a piece of value 1/3, and no other
piece has a higher value; agent 2 always receives one of the most two preferred (and equally liked) pieces;
agent 3 selects the most preferred piece. Therefore, if C2 = ∅, the theorem follows.
Otherwise, let us consider the final allocation of C (that is after the division of C1 and C2 ̸= ∅): Agent T ,
who is splitting the cake, is the one who receives the remaining piece of C2; anyway, she will be EF in the
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final allocation, because she likes the three pieces of C2 equally. The agent T selecting first piece is also EF
in the final allocation. It remains to show agent 1 is EF.

Agent 1 does not envy T , since 1 selects the piece of C2 before T . But does agent 1 envy agent T in the
final division of the whole cake C?

On the one hand, T is the agent who received X1 \X ′, and {X1 \X ′}∪C2 = X1. Therefore, no matter which
piece of C2 agent T receives, agent 1 will value the final piece of T at most 1/3 (because of the initialization
of the algorithm X1 has a value of 1/3 for agent 1). On the other hand, during the allocation of C1, agent
1 received a piece of value 1/3 and by adding another piece from C2 cannot decrease the value attained by
1, showing that 1 does not envy T .

1.3.5 Envy-Freeness for any Number of Agents

What about the existence of EF allocations for general n? We will see in the next section that they always
exist. What about computation?

Theorem 8 (Aziz and Mackenzie, 2016). There exists a finite protocol for computing an EF allocation with

a query complexity of O

(
nnnnnn )

.

Theorem 9 (Procaccia 2009). Any protocol for finding an envy-free allocation requires Ω(n2) queries in the
Robertson-Webb model.

There still is a large gap between these lower and upper bounds.

1.4 Efficiency

To obtain fairness, we might produce extremely inefficient partitions of a cake, as the following example
shows.

Example 4. Assume there are two agents N = {1, 2}, f1 = U [0, 1/2] and f2 = U [1/2, 1], where U [x, y]
is the uniform distribution over [x, y]. Consider the partition where agent 1 receives [0, 1/4] ∪ [3/4, 1] and
agent 2 receives [1/4, 3/4]. Such an allocation is EF and therefore PROP; notice that both agents receive their
proportional share. However, there is a much better allocation which is still EF but both agents get a utility
of 1; namely, it is sufficient to cut the cake at x = 1/2 and assign the left side o agent 1, and the right side
to agent 2.

This example might look artificial; it is not hard to verify that all the protocols we provided so far are
inefficient in the sense we are going to define in the next subsection.

1.4.1 Pareto Optimality

The most prominent definition of efficiency is Pareto optimality. Roughly speaking, an allocation is called
Pareto optimal (or Pareto efficient) if there exists no other allocation where each agent is not decreasing and
at least one agent is strictly increasing her utility. Formally:

Definition 4 (Pareto optimal allocation). Given a pair of allocations A,B of the cake C, B Pareto dominates
A, if for each i ∈ N , vi(Bi) ≥ vi(Ai) and at least one of the inequalities is strict.

An allocation A of C is Pareto optimal (PO) if there is no allocation B that Pareto dominates A.

Notice that a Pareto optimal allocation always exists. Pareto optimality is not per se an interesting property,
we will strive for fair allocations which also satisfy Pareto optimality.
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1.4.2 Nash Social Welfare – Fair and Efficient

A way to obtain Pareto optimal allocations is to resort to an optimization problem related to a particular
welfare function. It turns out that by maximizing the Nash social welfare function, we obtain an extremely
fair allocation and also guarantee Pareto optimality.

Definition 5. Given an allocation A of a cake C, the Nash social welfare (NSW) of A is defined as follows:

NSW(A) =

(∏
i∈N

vi(Ai)

) 1
n

.

Clearly, an allocation maximizing the Nash social welfare always exists. We call such an allocation NSW-
optimal.

Example 5. Consider the instance depicted in Figure 3 and the allocation A1 = [0, 1/6], A2 = [1/6, 5/6],

and A3 = [5/6, 1] has a Nash welfare of
(
1
2 ·

4
6 ·

1
2

) 1
3 =

(
1
6

) 1
3 . This allocation is EF but is not Nash optimal.

Consider the allocation where the first third of the cake is assigned to agent 1, the second third to agent 2,

and the remaining piece to agent 3. Such an allocation has a Nash welfare of
(
1 · 13 · 1

) 1
3 =

(
1
3

) 1
3

Proposition 10. Every NSW-optimal A is PO.

Proof. By contradiction, if an allocation B Pareto dominates A then B has strictly better NSW.

Notice that maximum Nash social welfare is scale-invariant: if we multiply the valuation vi of any agent i
by any positive number αi > 0, then this does not change the optimal allocations w.r.t. NSW.
An interesting aspect of the NSW is that it is a good (and fair) trade-off between egalitarian and utilitarian
social welfare objectives.

� Utilitarian social welfare: Sum of agents’ utilities, i.e. USW (A) =
∑

i vi(Ai). The USW only focuses
on overall happiness without caring about each individual.

� Egalitarian social welfare: Minimum of agents’ utilities, i.e. ESW (A) = mini vi(Ai). The ESW cares
about a specific individual without caring about the overall happiness.

1.5 Existence of Envy-Free Allocations

In this section, we discuss the existence of EF allocations. The main result is the following:

Theorem 11. Every NSW-optimal A is EF.

Let’s first build an intuition for why this is true.

Example 6. Consider an instance with two agents. Agent 1 has density function U [0, 1/2] while agent 2
density function U [0, 1]. Suppose we have the allocation A with A1 = [0, 1/6] and A2 = [1/6, 1]. Now A is

not EF and has a Nash welfare of
√

1
3 ·

5
6 =

√
5
18 .

To prove our theorem, we show that whenever an allocation is not EF it is possible to move a piece of cake
from the bundle of the envied to the bundle of the envious agent while increasing the Nash welfare.
In the specific example, 1 envies 2 and we can move [1/6, 1/4] from A2 to A1. After this move, we obtain a

new allocation A′, and the new Nash welfare is
√

1
2 ·

3
4 =

√
3
8 . Thus, we increased the Nash welfare.

Proof. Let A be a NSW-optimal allocation. It is easy to see that in such an optimal allocation we have
NSW (A) > 0 (since this is already true, e.g., for every allocation that is PROP). Thus, vi(Ai) > 0 for all
agents i ∈ N .
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Let us assume by contradiction that A is not EF. Then there exist i, j ∈ N such that vi(Aj) > vi(Ai). To
reach a contradiction, we show there exists a piece of cake Z ⊂ Aj such that we can strictly improve the
NSW by moving Z from Aj to Ai.
Let j split Aj into k equally liked pieces for her, for some k ∈ N, i.e. each of them has value 1

k · vj(Aj). Let
i choose the most preferable piece, let’s call this piece Z. Then the following conditions hold:

vj(Z) =
1

k
· vj(Aj) and vi(Z) ≥ 1

k
· vi(Aj).

Let us call A′ the allocation obtained by moving Z from Aj to Ai.
Notice that only i and j have a different utility in A and A′, respectively. Therefore, to understand which
allocation is better it suffices to compare the product of the utilities of i and j in the two allocations.
Formally:

NSW(A′)

NSW(A)
> 1 ⇔

(∏
k∈N vk(A

′
k)∏

k∈N vk(Ak)

) 1
n

> 1 ⇔
(
vi(A

′
i) · vj(A′

j)

vi(Ai) · vj(Aj)

) 1
n

> 1 ⇔
vi(A

′
i) · vj(A′

j)

vi(Ai) · vj(Aj)
> 1

If vi(A
′
i) · vj(A′

j) > vi(Ai) · vj(Aj), we reach the desired contradiction.
We have

vi(A
′
i) · vj(A′

j) = (vi(Ai) + vi(Z)) · (vj(Aj)− vj(Z))

≥
(
vi(Ai) +

1

k
· vi(Aj)

)(
1− 1

k

)
· vj(Aj)

= vi(Ai) · vj(Aj)−
1

k
· vi(Ai) · vj(Aj) +

1

k

(
1− 1

k

)
· vj(Aj) · vi(Aj) .

Therefore, we reach the desired contradiction if

−1

k
· vi(Ai) · vj(Aj) +

1

k

(
1− 1

k

)
· vj(Aj) · vi(Aj) > 0

⇐⇒ −vi(Ai) +

(
1− 1

k

)
· vi(Aj) > 0 (since vj(Aj) > 0)

⇐⇒ vi(Aj)

vi(Aj)− vi(Ai)
< k.

To conclude, if i envies j, then by choosing k large enough, it is possible to find a piece of cake Z such that
by moving Z from Aj to Ai, the NSW strictly improves. This is a contradiction to the optimality of A. The
theorem follows.

Since any NSW-optimal allocation is PO we also have the following:

Proposition 12. There always exists an allocation that is simultaneously EF and PO.

What about computation? It is not necessarily easy and depends on the type of valuations we are considering.

2 Indivisble Goods

2.1 Setting

We are given a set ofm indivisible resources, a.k.a. items or goods, G = {g1, . . . , gm}, and a setN = {1, . . . , n}
of n agents.

Definition 6 (Allocation). An allocation A is a partition of G into disjoint sets, each of them assigned to
at most one agent. For each i ∈ N , we denote by Ai ⊆ G the bundle (that is, the set of items) received by
agent i in the allocation A.
Usually, the allocation is also required to be complete, that is,

⋃
i Ai = G.



10 Fair Division – Martin Hoefer, Giovanna Varricchio

Agents’ valuations. Agents have preferences over possible bundles they might receive. Preferences are
usually quantifiable and are expressed by means of valuations functions.

Definition 7 (Valuations). The valuation function of agent i is a mapping vi : 2
G → R≥0.

We will mostly focus on valuation functions that are additive. The results we provide hold only for additive
valuations unless specified otherwise.

Definition 8 (Additive Valuations). A valuation function v : 2G → R≥0 is called additive if for each X ⊆ G,
v(X) =

∑
g∈X v({g}).

For our convenience, in what follows we will write v(g) instead of v({g}).

Example 7. Consider the example of an instance with additive valuations depicted in Table 1. We have
three agents and five items. The depicted allocation gives a value of 17 to agent 1, 12 to agent 2, and 3 to
agent 3.

g1 g2 g3 g4 g5

Agent 1 15 3 2 2 6

Agent 2 7 5 5 5 7

Agent 3 20 3 3 3 3

Table 1: An example of additive valuations. Line i corresponds to agent i. Circles correspond to the allocated
items in a possible (complete) allocation.

2.2 Fairness Criteria

In this section, we reintroduce some fairness criteria from cake cutting. We will see that the solutions we
defined are no longer guaranteed to exist. Therefore, we introduce some relaxations to circumvent this
problem.

2.2.1 Definitions

The proportional share of agent i is given by PSi =
vi(G)
n .

Definition 9 (Proportionality). An allocation A is called proportional (PROP) if each agent receives at
least her proportional share, that is, ∀i ∈ N it holds

vi(Ai) ≥ PSi .

Also redefining envy-freeness is straightforward.

Definition 10 (Envy-freeness). An allocation A is called envy-free (EF) if for each i, j ∈ N it holds

vi(Ai) ≥ vi(Aj) .

Observe that for indivisible items EF =⇒ PROP, and there might exist allocations which are PROP but
not EF.
Unfortunately, EF and PROP allocations may not exist.

Example 8. Let us consider two agents and one valuable (positively valued by both agents) item. No matter
who receives the item the resulting allocation is neither EF nor PROP.
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Such an impossibility holds even when m > n, see our example in Table 1. Indeed, this instance does not
admit any envy-free or proportional allocation. Consider agent 3. She must get at least {g1} or {g2, g3, g4, g5}.
The latter case, leaves one item to be allocated to either agent 1 or 2 which cannot lead to a proportional
allocation. On the other hand, if agent 3 gets g1, agent 1 must receive at least three of the remaining four
goods and 2 must get at least two, which is not possible.

Due to this impossibility result, relaxed versions of EF and PROP have been introduced and studied.

Definition 11 (Proportionality up to one Good). An allocation A is called proportional up to one good
(PROP1) if, for each i ∈ N , either Ai = G or there exists g ∈ G \Ai

vi(Ai ∪ {g}) ≥ PSi .

Notice that vi(Ai ∪ g) = vi(Ai) + vi(g) when valuations are additive.

Definition 12 (Envy-Freeness up to one Good). An allocation A is called envy-free up to one good (EF1)
if, for each i, j ∈ N , either Aj = ∅ or there exists g ∈ Aj such that

vi(Ai) ≥ vi(Aj \ {g}) .

Example 9. The allocation depicted in Table 1 is an EF1 allocation.

Remark Clearly, EF =⇒ EF1 and PROP =⇒ PROP1.

Proposition 13. Any EF1 allocation is also PROP1 (in instances with additive valuations).

Proof. Let us show the statement for agent i. Since i is EF1, for each j ∈ N , with Aj ̸= ∅, there exists
gj ∈ Aj such that

vi(Ai) ≥ vi(Aj \ {gj}) .

Summing up for all i ∈ N , and by additivity, we get

n · vi(Ai) ≥ vi(Ai) +
∑
j ̸=i

(vi(Aj)− vi(gj)) = vi(G)−
∑
j ̸=i

vi(gj) ,

and therefore vi(Ai) ≥ PSi −
∑

j ̸=i vi(gj)

n . If every Aj = ∅, then Ai = G making the allocation proportional

for i. Otherwise, by selecting g∗ = argmaxg∈G\Ai
vi(g), we have vi(Ai) ≥ PSi − (n−1)vi(g

∗)
n ≥ PSi − vi(g

∗),
and hence agent i is PROP1.
Applying the same argument to all the agents the statement follows.

The statement does not necessarily hold beyond additive valuations (e.g., it might fail to hold for general
monotone valuations defined below). Also, we can observe that the converse statement is false, even for
additive valuations.

Proposition 14. There exist allocations (for instances with additive valuations) that are PROP1 but not
EF1.

Proof. Exercise.

2.3 Existence and Computation of EF1 and PROP1 Allocations

Let us discuss the computation of EF1 allocations for additive (where they are also PROP1) and monotone
valuation functions.
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2.3.1 Round-Robin Procedure

We show that, thanks to a Round-Robin procedure, EF1 allocations always exist for additive valuations and
can be computed in polynomial time.
Let us first consider general sequential algorithms. Roughly speaking, in a sequential allocation of items, we
create a vector (sequence) s = (s1, . . . , sm) where the component sh corresponds to the agent who will select
her most preferred item at the h-th round of the procedure. The vector s is also known as picking sequence.

Sequential allocation algorithm. A sequential allocation algorithm takes as input a picking sequence
s, the goods G, the agents N , and their valuations. The algorithm proceeds as follows:

� A ← (∅, . . . , ∅)

� For h = 1, . . . ,m

– i← sh

– g∗ ← argmaxg∈G vi(g)

– Ai ← Ai ∪ {g∗}, G ← G \ {g∗}

The Round-Robin procedure is the sequential allocation algorithm executed with a picking sequence of length
m in the form s = (1, . . . , n, 1, . . . , n, 1, . . . ), for a fixed ordering 1, . . . , n of the agents.

Example 10. The allocation in Tab. 1 is the result of Round-Robin for the ordering 1, 2, 3.

Theorem 15. The Round-Robin procedure outputs an EF1 allocation when agents’ valuations are additive.

Proof. Let us split the algorithm into rounds: We call Round k the k-th occurrence of 1, . . . , n in the picking
sequence s = (1, . . . , n, 1, . . . , n, 1, . . . ). Therefore, in a round k, the agents receive a k-th item, if possible.
Notice that in the last round it is possible that not all the agents have the opportunity to select an item.
We start by noticing that the first agent in the ordering (which is 1) is EF since the item she gets in a Round
k is at least as good as the item selected by any other agent in the same round.
Let us consider agent i and remove the first i− 1 agents in the sequence s (let’s call this new sequence s(i))
and remove the items these agents selected in the first round. By running Round-Robin with s(i) on the
refined set of goods i is the first agent in the sequence. Notice that s(i) is a Round-Robin sequence for
the ordering i, i + 1, . . . n, 1, . . . i − 1, and hence we get an EF allocation for i. By reassigning the items we
removed to their owner we get an EF1 allocation. Moreover, this allocation coincides with the outcome of
the original Round-Robin with the sequence s, and therefore the statement follows.

2.3.2 Envy-Graph and Envy-Cycle Elimination

Is it possible to achieve EF1 (but not necessarily PROP1) for more general valuation functions?

Definition 13 (Monotone Valuations). A valuation function v : 2G → R≥0 is called monotone if for each
Y ⊆ X ⊆ G, v(Y ) ≤ v(X).

For our purposes we need to introduce the following instrument:

Definition 14 (Envy-Graph). Given a (partial) allocation A, the envy graph for the allocation A is defined
as follows:

� each agent i is represented by a node, for simplicity we call the node i;

� there exists a directed edge (i, j) if and only if vi(Aj) > vi(Ai).
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Note that the directed edge represents the envy of i towards j. Hence, if i is a source in the envy-graph, she
is not envied by any other agent.
The envy-graph is an extremely useful tool to reduce envy in an allocation. In fact, if there exists a cycle
we can reduce the envy by trading bundles along the cycle. Formally, let us assume that an allocation A
induces a cycle C = i1, i2, . . . , ik, i1 involving k (w.l.o.g.) distinct agents. Trading the bundles along the
cycle means we create a new allocation A′ where A′

i = Ai+1 for each i = 1, . . . k − 1 and A′
k = A1 while

all the other bundles remains the same. By trading bundles along a cycle we reduce the number of edges
in the envy-graph without creating new ones. More importantly, trading along an envy-cycle preserves the
EF1 property, as formalized in the following lemma:

Lemma 16. Given an EF1 allocation A, if the envy-graph has a cycle C, then the allocation A′ obtained
from A by trading the cycle C is also EF1.

Proof. From the perspective of agents who are not in the cycle, the allocation is not changing significantly
(we are only changing the owners of the bundles).
For the agents in the cycle, the value of their bundle increases. It is higher than the value attributed to the
bundle they previously had. Therefore, in the new allocation, any agent i in the cycle does not envy her
previous bundle while the previous edges (i, j) can only disappear.

The envy-cycle elimination protocol. The envy-cycle elimination starts from an empty allocation
(which is clearly EF1). At each round, one available item g is allocated to some agent i who is not envied
by any other (which is a source node in the envy-graph). This maintains the EF1 property since i was note
envied before inserting g. At the end of the round, to guarantee the existence of source nodes, if a cycle
appears in the envy-graph, bundles along the cycle are traded. Therefore, at the end of each round there is
no cycle in the envy-graph. Since EF1 is preserved (by Lemma 16) at each step of the procedure, the final
allocation is EF1.
Formally, envy-cycle elimination can be summarized as follows:

� A ← (∅, . . . , ∅)

� Consider goods sequentially from g1 up to gm

� For h = 1, . . . ,m

– i← a sink node in the envy-graph

– Ai ← Ai ∪ {gh}, G ← G \ {gh}
– update the envy-graph

– While there exists cycle C in the envy-graph: Trade along cycle C

Theorem 17 (Lipton et al. 2004). If agents’ valuations are monotone, then envy-cycle elimination outputs
an EF1 allocation.

Proof. The proof proceeds by induction as explained above. At each step the EF1 property is satisfied.

What is the complexity of envy-cycle elimination? This procedure guarantees the existence of an EF1
allocation for monotone valuations; however, the time complexity of the procedure is not clear. This is
closely related to the representation and the knowledge we have of the valuation functions.
At every iteration of the FOR-loop, after adding in the next item, the envy graph has to be updated, and
therefore all agents’ valuation functions have to be evaluated on the new bundle. The evaluation cannot
be considered an atomic operation unless we have an oracle. Let us denote by T ∗ the time complexity for
determining the value of any bundle by any agent. Then the runtime caused by the parts of the FOR loop
not including the WHILE loop is O(mnT ∗).
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To bound the overall number of cyclic trades within the WHILE loop, note that by performing a cycle, at
least two edges disappear in the envy-graph. How many edges are introduced during the whole execution? In
every iteration of the FOR loop at most n−1 new edges are introduced. Hence overall at most O(mn) edges
are introduced, and thus the number of cycles performed is also at most O(mn). Performing a cycle can
be done in O(n2), e.g., by using adjacency matrices for graph representation. The complexity of envy-cycle
elimination is thus O(mnT ∗ + n3m), and this can be considered polynomial-time, since T ∗ is an intrinsic
value depending on the given valuations.

2.4 EF1 and Efficiency

We now turn our attention again to additive valuations. Since EF1 allocations do always exist, we may try
to ask for further properties for such a solution. A compelling notion is the one of efficiency, usually defined
as Pareto optimality. Roughly speaking, we do not want to create waste while achieving EF1.
We have seen that maximizing welfare functions such as the utilitarian or the Nash social welfare leads to
Pareto optimal allocations in cake cutting. It remains true also for indivisible goods (it is sufficient to apply
the very same arguments). Interestingly, it turns out that any allocation maximizing Nash social welfare is
also particularly fair.

Remark. There are scenarios in which the maximum Nash social welfare is 0. Consider for example the
case of two agents and an item. In this case, we at first maximize the number of agents having positive
value for their bundle, then maximize the Nash welfare among these agents. We call such allocations Nash
optimal.

Theorem 18. Let A be a Nash optimal allocation, then A is also EF1.

Proof. Let be A a Nash optimal allocation.
Let us assume NSW(A) ̸= 0, which means, every agent has a positive value for her bundle, and therefore
no bundle is empty. It is possible to show that the statement holds true even if NSW(A) = 0 with a careful
adaptation of the proof.
We want to show that for every i, j ∈ N , there exists g ∈ Aj such that vi(Ai) ≥ vi(Aj)− vi(g).
If vi(Aj) = 0 the claim trivially follows since i does not envy j.
Otherwise, since A is Nash optimal, by moving any item g ∈ Aj to Ai the Nash social welfare cannot improve.
Hence,

vi(Ai) · vj(Aj) ≥ (vi(Ai) + vi(g)) · (vj(Aj)− vj(g)) ⇔
vj(g) · (vi(Ai) + vi(g)) ≥ vi(g) · vj(Aj)

showing that, for each g ∈ Aj

vi(Ai) + vi(g) ≥
vi(g)

vj(g)
· vj(Aj) . (1)

Let us select g∗ = argming∈Aj ,vi(g)>0
vj(g)
vi(g)

. Notice that g∗ is well defined; in fact, there must exist at least

one positively valued good in j’s bundle according to i’s valuations because vi(Aj) > 0. By definition of g∗,
it holds

vj(g
∗)

vi(g∗)
≤
∑

g∈Aj
vj(g)∑

g∈Aj
vi(g)

≤ vj(Aj)

vi(Aj)

and hence, by inverting terms,
vi(Aj)
vj(Aj)

≤ vi(g
∗)

vj(g∗) .

This inequality together with (1) shows that g∗ ∈ Aj is such that vi(Ai) ≥ vi(Aj) − vi(g
∗), concluding the

proof.

In conclusion, for additive valuations there exists an allocation that is simultaneously EF1 and Pareto optimal.
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Proposition 19. Under additive valuations, an allocation that is simultaneously EF1 and PO always exists.

This is only an existential result, computing a maximum NSW allocation is in general hard, even for two
agents with identical valuations.
So far we discussed the existence of EF1 and hence PROP1 allocations. Are there any other meaningful
relaxations for EF and PROP?

2.5 Beyond EF1 Allocations – Envy-Freeness up to any Good

EF1 represents in first approximation a good relaxation of the EF fairness concept. While we know that
EF =⇒ EF1, we see an example in which an EF1 allocation might be quite unfair.

Example 11. Consider a fair division instance with two agents, three goods, and additive valuations depicted
in Table 2.
Let us consider the allocation A1 = {g1, g3} and A2 = {g2}. This allocation is EF1 as agent 2 is allowed to
remove g1 to eliminate the envy. However, according to agent 2, v2(A1) = 13 and v2(A2) = 3 which is a
quite large gap between the two bundles.

g1 g2 g3

Agent 1 10 2 1
Agent 2 10 3 2

Table 2: Valuations in Example 11.

Roughly speaking, in the definition of EF1, allowing to remove some good could be too “generous”, what
about the removal of any?

Definition 15 (Envy-freeness up to Any Good). An allocation A is called envy-free up to any good (EFX)
if, for each i, j ∈ N , either Aj = ∅ or for every g ∈ Aj such that vi(g) > 0 it holds

vi(Ai) ≥ vi(Aj \ {g}) .

Example 12. Consider the allocation in Table 1. The allocation is EF1 but not EFX.
Consider for the same instance the allocation A1 = {g4, g5}, A2 = {g2, g3}, A3 = {g1}. This is an EFX
allocation.

The following implications easily follow.

Proposition 20. EF =⇒ EFX =⇒ EF1

It is also easy to see that backward directions do not hold.

2.5.1 On EFX Existence

Unfortunately, the existence of EFX-allocations is unknown, even for additive valuations! It is only known
to be guaranteed for special cases like two or three agents or identical valuations.

Two agents. We show the existence of EFX allocations for two agents.

Theorem 21. EFX allocations always exists for n = 2 and can be efficiently computed.

Proof. We show the existence by providing an algorithm that is a discrete version of the CutAndChoose
protocol.



16 Fair Division – Martin Hoefer, Giovanna Varricchio

� Agent 1 computes a partition (A1, A2) such that v1(A1) ≥ v1(A2) and v1(A1 \ {g}) ≤ v1(A2) for each
g ∈ A1 such that v1(g) > 0;

� Agent 2 selects the most favorite bundle for her;

� Agent 1 gets the remaining bundle.

The resulting allocation is EFX. Indeed, agent 2 does not envy agent 1. Agent 1, no matter which bundle
she receives, is EFX by the conditions on the two bundles. We only need to clarify how to compute such a
partition.
To compute the partition (A1, A2) we proceed as follows1:

� Sort goods in a non-increasing order of values according to 1, that is, v1(g1) ≥ v1(g2) ≥ . . . ≥ v1(gm)

� (A1, A2)← (∅, ∅)

� allocate items in the ordering g1 . . . gm to the bundle Ai, i = 1, 2, of minimum value for agent 1.

Assume without loss of generality that v1(A1) ≥ v1(A2), otherwise we change names to the bundles. We
have that v1(A1 \ {g}) ≤ v1(A2) for each g ∈ A1, such that v1(g) > 0, must hold. Notice that this means
that for 1, receiving A2 would make her EFX. Hence, it is sufficient to show that v1(A1 \ {g∗}) ≤ v1(A1) for
g∗ ∈ A1 such that v1(g

∗) > 0 and g∗ is the least valued good in A1. This holds true since before inserting
g∗ in A1 the value of A1 was smaller or equal to the value of A2, according to 1. Furthermore, g∗ is the
smallest positively valued good in A1, therefore the statement follows.

Identical additive valuations. Now we assume that the agents have identical additive valuations, that
is, vi = v for each i ∈ N where v is additive.
We start by showing that EFX allocations always exist in this setting.

Theorem 22. If agents have identical valuations, every Nash optimal allocation is EFX.

Proof. Assume A is Nash optimal. We denote by v the valuation function of the agents. Therefore, moving
any positively valued g from any Aj to any Ai cannot strictly improve the Nash social welfare. Formally,

v(Ai) · v(Aj) ≥ (v(Ai) + v(g)) · (v(Aj)− v(g)) ⇔
v(g) · (v(Ai) + v(g)) ≥ v(g) · vj(Aj) .

Since v(g) > 0, we have for each i, j and g ∈ Aj , v(Ai) ≥ vj(Aj)− v(g) and the statement follows.
Notice we assumed that the NSW is not 0. If so, it means that at least one agent has no item in her bundle,
and hence there are not enough items for the agents. Recall that in this case, we assume that we first
maximize the number of agents with a positive value for their bundle and then the Nash welfare among
those agents. Such an allocation assigns each agent at most one item, and hence it is EFX.

Unfortunately, it is hard to compute such an allocation, even for n = 2.

Theorem 23. It is NP-hard to compute a Nash optimal allocation, even with identical valuations and n = 2.

Proof. Reduction from Partition.
Reduction:
We create a far division instance with two agents and identical valuations v. We set (with an abuse of
notation) G = X and v(x) = x.
It is sufficient to notice that, for identical valuation, the more balanced the values of the two bundles the
higher the Nash welfare. Therefore, denoted by z =

∑t
i=1 xi, a partition exists if and only if the maximum

Nash welfare is of z/2.

Despite this negative result, it is still possible to compute an EFX allocation with good welfare guarantees.
We next consider a greedy algorithm to compute an EFX allocation.

1Notice we will use the same idea in the next paragraph for identical valuations.
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Partition

Input: A set X = {x1, . . . , xt} of positive values

Problem: Does there exist a partition of X, i.e. (S,X \ S), s.t.
∑

x∈S x =
∑

x∈X\S x?

Greedy algorithm for identical valuations:

� A ← (∅, . . . , ∅)

� sort items g1, . . . , gm in a non-increasing order, that is, v(g1) ≥ v(g2) ≥ . . . ≥ v(gm)

� For h = 1, . . . ,m

– i← argmini∈N v(Ai) (break ties arbitrarily)

– Ai ← Ai ∪ {gh}

Theorem 24 (Barman et al. 2018). The greedy algorithm for identical valuations computes an EFX alloca-
tion which is an 1.061 approximation in terms of Nash social welfare.

Proof. We only prove EFX. In particular, at every iteration EFX is satisfied.
At the beginning, the allocation is empty, and therefore, EFX.
Consider an arbitrary iteration where good g is allocated to, say, agent i. Before allocating g no one envies
i since she has the minimum valued bundle and the allocation is EFX. For every j, k ̸= i, after allocating g,
the allocations remains EFX if i is not considered. Let us now consider i and observe that no j EFX-envies
i since g is the minimum item in the new bundle (the algo introduces items in a non-increasing order) and
before introducing g so one was envying i. On the other hand, also i does not EFX-envy any j, since her
bundle has increased.
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[7] Kataŕına Cechlárová and Eva Pillárová. On the computability of equitable divisions. Discrete Opti-
mization, 9(4):249–257, 2012.



18 Fair Division – Martin Hoefer, Giovanna Varricchio

[8] Lester E Dubins and Edwin H Spanier. How to cut a cake fairly. The American Mathematical Monthly,
68(1P1):1–17, 1961.

[9] Jeff Edmonds and Kirk Pruhs. Cake cutting really is not a piece of cake. In SODA, volume 6, pages
271–278, 2006.

[10] Shimon Even and Azaria Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):285–296,
1984.

[11] Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce,
pages 125–131, 2004.

[12] Ariel D Procaccia. Thou shalt covet thy neighbor’s cake. In Twenty-First International Joint Conference
on Artificial Intelligence, 2009.

[13] Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate maximin shares. In
Proceedings of the fifteenth ACM conference on Economics and computation, pages 675–692, 2014.

[14] Erel Segal-Halevi and Balázs R Sziklai. Monotonicity and competitive equilibrium in cake-cutting.
Economic Theory, 68(2):363–401, 2019.


