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Expert Problem: Example

In many applications we make decisions not once but repeatedly, say, every day,
without knowing the behavior of other actors or “nature” on that day. We
consider learning algorithms that enable us to cope with such problems.

Example:
▶ Suppose you are commuting day by day from home to Campus Hörn and

back.

▶ The traveling time per day is between 30 and 60 minutes depending on the
chosen route and the traffic situation.

▶ Suppose you know, say, three experts that are also commuting from your
area to campus and use different strategies for choosing the route.

We will show that you can become almost as fast as the best expert just by
imitating the expert choices.
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Expert Problem: Definition

Assume an adversarial online model with discrete time steps 1, . . . , T . Let [T ]
denote {1, . . . , T}.

Experts and Losses
▶ There are N experts numbered from 1 to N .
▶ In step t ∈ [T ], expert i ∈ [N ] experiences a loss of ℓti ∈ [0, 1]

(as chosen by an adversary or “nature”).
▶ Let Lt

i =
∑t

k=1 ℓ
k
i .

Combining Experts
▶ In step t, an online algorithm H chooses expert i ∈ [N ] with probability pti.
▶ The vector pt might depend on the loss vectors ℓ1, . . . , ℓt−1.
▶ The (expected) loss of H in step t is ℓtH =

∑
i∈[N ] p

t
iℓ

t
i.

▶ Let Lt
H =

∑t
k=1 ℓ

k
H .
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Greedy Algorithm

In the following, let Lt−1
min = mini∈[N ] L

t−1
i , for 1 ≤ t ≤ T .

Greedy Algorithm
At every time t,
▶ let St−1 = {i : Lt−1

i = Lt−1
min};

▶ let j = min{St−1};
▶ set ptj = 1, and pti = 0, for i ̸= j.

In the analysis of the Greedy algorithm, we assume for simplicity that all losses
are either 0 or 1 instead of real numbers from [0, 1].
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Greedy Algorithm

Example:

ℓ1 1 0 0 1 0 0 1 0 0 1 0 0 1 0
L1 1 1 1 2 2 2 3 3 3 4 4 4 5 5

ℓ2 0 1 0 0 1 0 0 1 0 0 1 0 0 1
L2 0 1 1 1 2 2 2 3 3 3 4 4 4 5

ℓ3 0 0 1 0 0 1 0 0 1 0 0 1 0 0
L3 0 0 1 1 1 2 2 2 3 3 3 4 4 4

j 1 2 3 1 2 3 1 2 3 1 2 3 1 2

ℓGreedy 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LG 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Greedy Algorithm

Theorem
The Greedy algorithm, for any sequence of losses from {0, 1}, has

LT
G ≤ N · LT

min + (N − 1).

Proof:
▶ Partition the sequence into phases 0, . . . , LT

min such that

Every step t with Lt−1
min = i belongs to phase i.

▶ In each phase i < LT
min, the Greedy algorithm incurs a loss of at most N .

▶ In phase LT
min, the loss of Greedy is at most N − 1.
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Lower Bound for Deterministic Algorithms

Theorem
For any deterministic online algorithm D and every T ≥ 1, there exists a
sequence of T losses such that

LT
D = T and LT

min ≤ ⌊T/N⌋.

This lower bound can be shown quite easily by generalizing the example that
we have given for the Greedy algorithm. (How?)

The lower bound shows that one cannot get better than the Greedy algorithm
without using randomization.
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Randomized Weighted Majority (RWM) Algorithm

Let η ∈ (0, 1
2
] be a suitably chosen parameter.

Randomized Weighted Majority (RWM) Algorithm
Initially, set w1

i = 1, for every i ∈ [N ].
At every time t,
▶ let W t =

∑N
i=1 w

t
i ;

▶ choose expert i with probability pti = wt
i/W

t;
▶ set wt+1

i = wt
i · (1− η)ℓ

t
i .
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Randomized Weighted Majority (RWM) Algorithm

Theorem (Littlestone, Warmuth, 1994)
The RWM algorithm, for any sequence of losses from [0, 1], has

LT
RWM ≤ (1 + η)LT

min +
lnN

η
.

Setting η =
√

lnN
T

yields

LT
RWM ≤ LT

min + 2
√
T lnN .
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Randomized Weighted Majority (RWM) Algorithm

The regret of a learning algorithm H is defined as LT
H − LT

min.

Corollary
The RWM algorithm with η =

√
lnN
T

has regret at most 2
√
T lnN .

The average regret per step is thus only 2
√

lnN
T

.

Observe that this quantity is going to zero when increasing T .

Algorithms with this property are called

no-regret learning algorithms.

Thus, in contrast to the simple greedy algorithms is RWM a no-regret
algorithm.
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Randomized Weighted Majority (RWM) Algorithm

Proof of the theorem:
▶ Let us analyze how the sum of weights W t decreases over time. It holds

W t+1 =
N∑
i=1

wt+1
i =

N∑
i=1

wt
i(1− η)ℓ

t
i .

▶ Observe that (1− η)ℓ = (1− ℓη), for both ℓ = 0 and ℓ = 1.
▶ Furthermore, (1− η)ℓ is a convex function in ℓ.
▶ For ℓ ∈ [0, 1] this implies (1− η)ℓ ≤ (1− ℓη).
▶ This gives

W t+1 ≤
N∑
i=1

wt
i(1− ℓtiη) .
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Randomized Weighted Majority (RWM) Algorithm

▶ Let F t denote the expected loss of RWM in step t.
▶ It holds F t =

∑N
i=1 ℓ

t
iw

t
i/W

t.
▶ Substituting this into the bound for W t+1 gives

W t+1 ≤ W t − ηF tW t = W t(1− ηF t) .

▶ As a consequence,

WT+1 ≤ W 1
T∏

t=1

(1− ηF t) = N

T∏
t=1

(1− ηF t) .

▶ The sum of weights after step T can be upper bounded in terms of the
expected loss of RWM.
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Randomized Weighted Majority (RWM) Algorithm

▶ On the other hand, the sum of weights after step T can be lower bounded
in terms of the loss of the best expert as follows:

WT+1 ≥ max
1≤i≤N

(wT+1
i ) = max

1≤i≤N

(
(1− η)

∑T
t=1 ℓti

)
= (1− η)L

T
min .

▶ Combining the bounds and taking the logarithm on both sides gives

LT
min ln(1− η) ≤ (lnN) +

T∑
t=1

ln(1− ηFT ) .

▶ In order to simplify, we will now use the following estimation

−z − z2 ≤ ln(1− z) ≤ −z

holding for every z ∈ [0, 1
2
].
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Randomized Weighted Majority (RWM) Algorithm

▶ This gives

LT
min(−η − η2) ≤ (lnN) +

T∑
t=1

(−ηF t)

= (lnN)− ηLT
RWM .

▶ Finally, solving for LT
RWM gives

LT
RWM ≤ (1 + η)LT

min +
lnN

η
.
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Learning Equilibria in Games

Regret minimization is a natural model for behavior in cases where we have to
make repeated decisions with incomplete information.

We consider regret learning when a game Γ = (N , (Σi)i∈N , (ci)i∈N ) is played
over and over again for T rounds (called repeated game).

Initially, no player i ∈ N knows the game. In each round t he picks a pure
strategy sti ∈ Σi using a no-regret algorithm. The algorithm of player i is based
only on the costs observed by i in previous rounds.

Does the system converge to (approx.) Nash equilibrium in this case?

This would be a nice and plausible explanation how Nash equilibria can evolve
in practice. Unfortunately, in general, the answer is “No”.
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Learning and Equilibria

For every player the average regret over time is going to 0. Based on this
property, we can derive a (more general) equilibrium concept.

Definition
Let V be a probability distribution over the states of a finite game. V is called
coarse-correlated equilibrium if for every player i ∈ N and every strategy
s′i ∈ Si it holds

Es∼V [ci(s)] ≤ Es∼V [ci(s
′
i, s−i)] .

V is called (additive) ε-approximate coarse-correlated equilibrium if

Es∼V [ci(s)] ≤ Es∼V [ci(s
′
i, s−i)] + ε .
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No-Regret and Coarse-Correlated Equilibria

Consider the history of play s1, s2, . . . , sT in a repeated game over T rounds.
We interpret the history as a distribution over states by choosing k ∈ [T ]
uniformly at random.

If player i has regret Ri(T ), then for every strategy s′i ∈ Si

Ek∈[T ][ci(s
k)] =

T∑
t=1

1

T
· ci(st) ≤

T∑
t=1

1

T
· ci(s′i, st−i) +

Ri(T )

T

= Ek∈[T ][ci(s
′
i, s

k
−i)] +

Ri(T )

T
.

Proposition
After T rounds if every player has regret at most R, then the history of play
represents a R

T
-approximate coarse-correlated equilibrium.

Suppose all players are using RWM, then after at most T = 4
ε2

· log(maxi |Si|)
rounds the history of play represents a ε-approximate coarse-correlated
equilibrium.
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Recall 2-Player Zero-Sum Games

▶ A 2-player zero-sum game is a strategic game with 2 players, where
cI(s) + cII(s) = 0 for every state s.

▶ Matrix A with |ΣI| rows and |ΣII| columns.
Player I is row player, player II is column player.

▶ aij is utility for player I in state (i, j),
aij is cost or loss for player II in state (i, j).

▶ We here normalize A to have aij ∈ [0, 1]:

Make A non-negative by adding max |aij | to every entry. Then divide by
the resulting largest entry scaling all aij to [0, 1].

Observe that this does not alter the optimal strategies (and thereby the
Nash equilibria) of the game.
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Examples

Matching Pennies
(normalized)(

1 0
0 1

)
Rock-Paper-Scissors
(normalized)

 1/2 0 1
1 1/2 0
0 1 1/2



A game with
|ΣI| ̸= |ΣII|:

(
0 1/2 1

1/4 1/2 3/4

)
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Maximin Strategies

▶ Gain-Floor for player I: v∗I = maxx miny x
TAy.

Optimal strategy x∗ guarantees the gain-floor for I (maximin strategy).

▶ Loss-Ceiling for player II: v∗II = miny maxx x
TAy.

Optimal strategy y∗ guarantees the loss-ceiling for II (minimax strategy).

Lemma
It holds that v∗I ≤ v∗II.

Theorem (Minimax Theorem)
In every 2-player zero-sum game it holds that v = v∗I = v∗II.
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Mixed Nash equilibrium

Corollary

State (x, y) in a 2-player zero-sum game is a mixed Nash equilibrium
⇔

x and y are optimal strategies.

Corollary
Every 2-player zero-sum game has at least one mixed Nash equilibrium. All
mixed Nash equilibria in such a game yield the same expected utility for player
I.

Theorem
In 2-player zero-sum games a mixed Nash equilibrium can be computed in
polynomial time.
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Learning in Zero-Sum Games

▶ Players do not know the game they are playing. They use no-regret
learning algorithms to make their strategy choice.

Can they learn to play optimally (i.e., learn a Nash equilibrium) ?

▶ Consider player II, experts are pure strategies, adversary is player I.
▶ In each step t learning algorithm H of player II picks mixed strategy yt

against an unknown adversary strategy xt of player I.
▶ Loss in round t for strategy (expert) i is

ℓti =
∑
j∈ΣI

xt
jaji .

▶ Total loss in round t of learning algorithm H is

ℓtH = cII(x
t, yt) =

∑
i∈ΣII

∑
j∈ΣI

xt
jajiy

t
i .
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No-Regret and Optimal Strategies

▶ No-regret learning algorithm H:

LT
H − LT

min

T
−→ 0 when T → ∞ .

▶ By definition, the average loss per round of any no-regret learning
algorithm becomes as small as the best average loss of any pure strategy
in hindsight.

▶ Is the average loss LT
H/T as small as the value of the game?

Theorem
For a 2-player zero-sum game with gain floor v∗I , if player II plays for T steps
using algorithm H with regret R, then the average loss

LT
H

T
≤ v∗I +

R

T
.

The result applies similarly for player I and the loss-ceiling.
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Learning the Gain Floor

Proof:
▶ We will show that the best pure strategy in hindsight has total loss at

most LT
min ≤ T · v∗I .

▶ Consider the history of play of the adversary player I, i.e., strategies
x1, x2, . . . , xT , and combine them to an “average strategy”

x̂j =
1

T

T∑
t=1

xt
j for all j ∈ ΣI.

▶ Total loss LT
i of a single strategy i ∈ ΣII in hindsight is the same if player

I had always played x̂ in all time steps:

Lt
i =

T∑
t=1

∑
j∈ΣI

xt
j · aji =

∑
j∈ΣI

(
T∑

t=1

xt
j

)
· aji = T ·

∑
j∈ΣI

x̂j · aji .
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Learning the Gain Floor

▶ If we assume I plays always x̂ and consider the best pure strategy for II in
hindsight, then the scenario reduces to a one-step game.

▶ In this one-step game, player I first determines the average history of play
x̂ and then player II picks best pure strategy against x̂ – i.e., I moves
first, then II answers.

▶ By definition of gain floor, there is always i ∈ ΣII such that gain of I/loss
of II is reduced to at most v∗I , i.e., cII(x̂, i) ≤ v∗I .

▶ Hence, there is a pure strategy i ∈ ΣII such that

LT
min ≤ LT

i ≤ T · v∗I .

▶ Combining these insights:

LT
H ≤ LT

min +R ≤ T · v∗I +R .
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A Simple Proof of the Minimax Theorem

Theorem (Minimax Theorem)
In every 2-player zero-sum game it holds that v = v∗I = v∗II.

Proof:
▶ For contradiction, assume v∗I + γ = v∗II for some γ > 0.
▶ Let both players play the game iteratively for T steps with a learning

algorithm that has regret R/T < γ/3.
▶ Using the average history of play as before we note that LT

min/T ≤ v∗I for
player II, and LT

min/T ≤ −v∗II for player I (“−” because of loss).
▶ But this means the algorithms yield at most vI + γ/3 average cost for

player II and at least vII − γ/3 average gain for player I.
▶ Average cost of II is average gain of I → Contradiction.
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Convergence

Corollary
If both players use a no-regret learning algorithm, the average histories of play
(x̂, ŷ) converge to optimal strategies and, thus, to a mixed Nash equilibrium of
the game.

This shows convergence only for the history of play, but not for the actual
behavior in the distributions xt and yt!

Theorem
There are no-regret algorithms for players I and II such that the actual
behavior xt and yt does not converge to optimal strategies.

Martin Hoefer Algorithmic Game Theory 2024/25
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Convergence for General No-Regret Algorithms

Matching Pennies (normalized) (
1 0
0 1

)
Proof: A “weird” no-regret algorithm H:
▶ Rule: I and II pick pure strategies, I moves to the other pure strategy in

rounds 1, 3, 5, ..., II moves to the other pure strategy in rounds 2, 4, 6,...
▶ If one player deviates from the rule, the other invokes the RWM algorithm.

(trick to ensure no-regret property for every possible sequence of play).

▶ LT
i /T → 0.5 for both strategies i = 1, 2 of II, average loss of algorithm

LT
H/T → 0.5. No-regret algorithm for II! (similar argument for I).

▶ None of the distributions yt is close to optimal strategy (0.5, 0.5), no
single round loss ℓtH is close to v = 0.5.

Martin Hoefer Algorithmic Game Theory 2024/25
Learning and Correlated Equilibria



Experts No-Regret, Coarse-Correlated Zero-Sum Correlated Equilibria

An Adaptive RWM Algorithm (Freund, Schapire, 1999)

Let η0 ∈ (0, 1
2
] and u be an upper bound on the value of the game.

Variable Randomized Weighted Majority (vRWM) Algorithm
Initially, set w1

i = 1, for every i ∈ [N ].
At every time t,
▶ let W t =

∑N
i=1 w

t
i ;

▶ choose expert i with probability pti = wt
i/W

t;
▶ if ℓtvRWM ≤ u then set wt+1

i = wt
i ;

▶ else set
ηt = 1− u(1− ℓtvRWM )

(1− u)ℓtvRWM

and wt+1
i = wt

i · (1− ηt)
ℓti .
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Comparison of Distributions

Definition
The relative entropy or Kullback-Leibler divergence of two distributions y and
y′ is defined as

RE(y || y′) =

n∑
i=1

yi · ln
(
yi
y′
i

)
.

To compare a, b ∈ [0, 1] we use distributions (a, 1− a) and (b, 1− b):

RE(a || b) = RE((a, 1− a) || (b, 1− b))

= a ln
(a
b

)
+ (1− a) ln

(
1− a

1− b

)
.

The relative entropy for distributions is always non-negative and
RE(y || y′) = 0 if and only if y = y′.
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Convergence of vRWM

Theorem
Let y′ be any mixed strategy for II which generates a loss of at most u against
every best response of I. Then in any iteration t of vRWM in which
ℓtvRWM ≥ u the relative entropy between y′ and yt+1 satisfies

RE(y′ || yt+1) ≤ RE(y′ || yt)−RE(u || ℓtvRWM ) .

In every step, in which the loss of vRWM is too high, the adjustment moves
the next distribution closer to a good strategy.
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Learning and Correlated Equilibria



Experts No-Regret, Coarse-Correlated Zero-Sum Correlated Equilibria

Proof of the Theorem

Proof:
For completeness, we provide a proof of the last theorem. Consider a step, in
which ℓtvRWM > u and bound

RE(y′ || yt+1)−RE(y′ || yt)

=
∑
i∈ΣII

y′
i ln

y′
i

yt+1
i

−
∑
i∈ΣII

y′
i ln

y′
i

yt
i

=
∑
i∈ΣII

y′
i ln

yt
i

yt+1
i

≤
∑
i∈ΣII

y′
i ln

1− ηtℓ
t
vRWM

(1− ηt)ℓ
t
i

,

where we use that yt+1
i = wt

i(1− ηt)
ℓti/W t+1 and

W t+1 ≤ W t(1− ηtF
t) = W t(1− ηtℓ

t
vRWM ) as observed above.
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Proof of the Theorem

RE(y′ || yt+1)−RE(y′ || yt)

≤
∑
i∈ΣII

y′
i ln

1− ηtℓ
t
vRWM

(1− ηt)ℓ
t
i

=
∑
i∈ΣII

y′
i ln

(
1

1− ηt

)ℓti

+ ln(1− ηtℓ
t
vRWM )

=

(
ln

1

1− ηt

)
·
∑
i∈ΣII

y′
iℓ

t
i + ln(1− ηtℓ

t
vRWM )

≤
(
ln

1

1− ηt

)
u+ ln(1− ηtℓ

t
vRWM ) ,

because strategy y′ never generates more loss than u.
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Proof of the Theorem

We take the derivative of(
ln

1

1− ηt

)
u+ ln(1− ηtℓ

t
vRWM )

for ηt and equate it with 0. This implies a minimum is attained at

ηt = 1− u(1− ℓtvRWM )

(1− u)ℓtvRWM

as desired. Plugging in this expression for ηt yields

− u ln

(
u

ℓtvRWM

· 1− ℓtvRWM

1− u

)
+ ln

1− ℓtvRWM

1− u

=−RE(u || ℓtvRWM ) .
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Convergence of vRWM

Corollary
For any sequence of strategies y1, y2, . . . the number of rounds in which the
loss ℓtvRWM ≥ u+ ε is at most

ln |ΣII|
RE(u || u+ ε)

.

For fixed ε this time is independent of T . Thus, the loss suffered in time steps
t must get closer to u when t gets larger and larger. This is a much more
desirable behavior than, e.g., the weird no-regret algorithm, which yields a loss
of 1 every second round, even for arbitrarily large t.
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Imitating Experts

No-Regret Algorithms and Coarse-Correlated Equilibria

Zero-Sum Games

Correlated Equilibria
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Correlated Equilibria

When players use no-regret algorithms, they converge to (approximate)
coarse-correlated equilibria. These equilibria provide a weaker stability
guarantee than mixed Nash equilibria. Are coarse-correlated equilibria the
strongest equilibrium notion that can be approximated quickly?

Definition
Let V be a probability distribution over the states of a finite game. V is called
a correlated equilibrium if for every player i ∈ N and every swap function
σ : Si → Si it holds

Es∼V [ci(s)] ≤ Es∼V [ci(σ(si), s−i)] .

V is called (additive) ε-approximate correlated equilibrium if

Es∼V [ci(s)] ≤ Es∼V [ci(σ(si), s−i)] + ε .
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Correlated Equilibria

In a mixed Nash equilibrium every player chooses her own distribution xi over
her own strategies. A distribution V over states emerges by independent
combination of player strategies xi. No player wants to unilaterally switch to a
different (pure) strategy.

In correlated and coarse-correlated equilibria we directly specify a distribution V
over states of the game. The distribution can combine and correlate the
strategy choices of the players (e.g. when resulting from a joint learning process
over time).

No player wants to unilaterally switch to a different (pure) strategy:
▶ Correlated: Suppose i knows that the random draw from V gives strategy

si for her. Given this knowledge, she does not want to deviate from si.
▶ Coarse-correlated: No player i wants to deviate to a fixed strategy si

before knowing the random draw from V. Hence, in this case i cannot
condition her deviation on the strategy si chosen for her in the draw from
V.
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Example

Two drivers are heading towards an intersection.

(A)ccelerate (B)reak
101 2

(A)ccelerate
101 0

0 1
(B)reak

2 1

Equilibria:
▶ Pure: States (A,B) und (B,A)
▶ Mixed (not pure): Both players xA = 0.01 und xB = 0.99.
▶ Correlated (not mixed):

Prs∼V [s = (B,A)] = 0.5 and
Prs∼V [s = (A,B)] = 0.5
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Example

Two drivers are heading towards an intersection.

(A)ccelerate (B)reak
101 2

(A)ccelerate
101 0

0 1
(B)reak

2 1

Equilibria:
▶ A correlated equilibrium is like a traffic light: Every player gets a strategy

suggestion drawn from the known distribution V over states. No player
wants to unilaterally change her suggested strategy, given that all others
stick to their suggestion.

▶ Coarse-correlated (not correlated): Not possible in symmetric 2× 2-games
(every coarse-correlated equilibrium is correlated), see exercises.
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A Hierarchy of Equilibrium Concepts

pure mixed correlated coarse-correlated
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Learning Correlated Equilibria

Can the players learn a correlated equilibrium?

For this task we concentrate on algorithms with a stronger guarantee in the
expert problem. For algorithm H let H(t) ∈ [N ] be the expert chosen in step t.
To measure regret, our benchmark was the total loss of the best single expert
in hindsight. Here we change this benchmark to the best function of experts

σ∗ ∈ arg min
σ:[N ]→[N ]

T∑
t=1

ℓtσ(H(t)) ,

with LT
smin =

∑T
t=1 ℓ

t
σ∗(H(t)) the total loss of the best function of experts.
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Swap Regret

Definition
The swap regret of H is given by

SR(T ) = LT
H − LT

smin =

t∑
t=1

ℓtH −
T∑

t=1

ℓtσ∗(H(t)) .

Swap regret captures the loss we would suffer if we could swap expert choices.
If the optimal swap function sets σ∗(i) = j, then this implies

Whenever H chose expert i, it should have better chosen expert j.

A no-swap-regret algorithm obtains SR(T )/T → 0 for T → ∞.

Observe: SR(T ) ≥ R(T ), and no-swap-regret ⇒ no-regret. (Why?)
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Swap Regret and Correlated Equilibrium

Consider a history of play s1, s2, . . . , sT over T rounds and interpret the history
as distribution over states.

If player i has swap regret SRi(T ), then for every strategy si and every
function σ : Si → Si

Ek∈[T ][ci(s
k)] =

T∑
t=1

1

T
· ci(sti, st−i)

≤
T∑

t=1

1

T
· ci(σ(sti), st−i) +

SRi(T )

T

= Ek∈[T ][ci(σ(s
k
i ), s

k
−i)] +

SRi(T )

T
.

Proposition
After T rounds if every player has swap regret at most R, then the history of
play represents a R

T
-approximate correlated equilibrium.
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No-Swap-Regret Algorithms

We can turn no-regret algorithms into no-swap-regret algorithms!

Theorem
If H is an algorithm with regret R(T ), then there is an algorithm M with swap
reget SR(T ) = N ·R(T ).

Proof:
We use N copies H1, . . . , HN of algorithm H. In some sense, Hj makes sure
that no function σ that maps expert j to σ(j) generates too much swap regret.

A master algorithm M coordinates the copies of H.
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Master Algorithm

Master Algorithm
In every step t,

1. obtain distributions qt1, . . . , q
t
n of

H1, . . . , HN

2. compute consensus distribution pt

3. choose expert i with probability pti

4. report to Hj a loss of ptj · ℓti, for
every expert i ∈ N

M

H1

H2

HN

qt1

pt1 · ℓt

qt2

pt2 · ℓt

qtN

ptN · ℓt

· · ·

pt

ℓt
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Master Algorithm: No Swap Regret

We defer the details of computing pt in line 2. to the end of the proof.

For swap regret we use the following notation:

▶ Total loss of master algorithm: LT
M =

T∑
t=1

∑
i∈[N ]

ptiℓ
t
i

▶ Total loss of best function σ∗: LT
smin =

T∑
t=1

∑
i∈[N ]

ptiℓ
t
σ∗(i)

Algorithm Hj “believes”, we are choosing expert i with probability qtj,i and the
loss for this choice would be ptjℓ

t
i.

▶ Total “internal” loss of Hj : LT
Hj

=
T∑

t=1

∑
i∈[N ]

qtj,i · (ptjℓti)

▶ Total loss of best expert kj for Hj : LT
min,j =

T∑
t=1

ptjℓ
t
kj

Regret for Hj is LT
Hj

− LT
min,j ≤ R(T ).
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Master Algorithm: No Swap Regret

Let σ∗ be the best function of experts. Then, by summing up,∑
j∈[N ]

LT
Hj

≤
∑
j∈[N ]

LT
min,j +R(T )

≤
∑
j∈[N ]

T∑
t=1

ptjℓ
t
σ∗(j) +

∑
j∈[N ]

R(T )

= LT
smin +N ·R(T ) .

Hence, for the sum of internal losses we obtained a bound on the swap regret.

But how does the real total loss LT
M relate to the sum of internal losses∑

j L
T
Hj

?

To obtain this relation we now specify how to compute the consesus
distribution pt.
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Master-Algorithmus: Consensus Distribution

Choose the consensus distribution pt by

pti =
∑
j∈[N ]

qtj,ip
t
j .

Then it holds:

LT
M =

T∑
t=1

∑
i∈[N ]

ptiℓ
t
i

=

T∑
t=1

∑
i∈[N ]

∑
j∈[N ]

qtj,ip
t
jℓ

t
i

=
∑
j∈[N ]

LT
Hj

≤ LT
smin +N ·R(T ) ,

and the theorem is shown.
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Master Algorithm: Markov Chain

pt ist die stationary distribution of the following Markov chain:

The states are the experts. If we arrive at state/expert i, then the probability
to move to state/expert j is given by qti,j . Matrix Qt with Qt(i, j) = qti,j
contains the transtition probabilities of all states/experts i.
Choose pt as the stationary distribution of this Markov chain, i.e., the
dominant eigenvector of matrix Qt. pt can be computed efficiently.

1

2

3

N
qt1,2

qt2,3

qt3,N

· · ·
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Overview: Equilibria, Computation, Convergence

Pure Nash Equilibrium
▶ Existence not guaranteed, only in some games (e.g. weakly acyclic games)
▶ Computation in poly-time in the size of the cost matrix (which is huge)
▶ PLS-hard in compactly representable congestion games
▶ Potential Games:

Convergence time of best-response dynamics can be exponential
Poly-time convergence for subclasses

Mixed Nash Equilibrium
▶ Existence in finite games (Nash’s Theorem)
▶ Computation in PPAD (Sperner’s Lemma) and PPAD-complete
▶ 2-player Zero Sum:

Computation in poly-time via LP
Convergence in poly-time with No-Regret algorithms
Convergence of play with vRWM-Algorithm
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Overview: Equilibria, Computation, Convergence

Correlated Equilibrium
▶ Existence in finite games (mixed NE is correlated equilibrium)
▶ Distribution over states without profitable ”swap”-deviations
▶ Convergence in poly-time with No-Swap-Regret algorithms

Coarse-Correlated Equilibrium
▶ Existence in finite games (correated is coarse-correlated)
▶ Distribution over states without profitable ”best expert”-deviations
▶ Convergence in poly-time with No-Regret algorithms

Note: Convergence guarantees for no-regret or no-swap-regret algorithms apply
to ε-approximate variants of equilibria, which emerge on average over the
history of play. ε decreases as a function of T .
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