
Department for computer science 1 SS 2020
Prof. Dr. Gerhard Woeginger 15.07.2020
Janosch Fuchs

Exam
Algorithms and Data Structures

Name: .

First name: .

Matriculation number: .

Course of studies: .

Note:

• You have 90 minutes for the exam.

• Please write your name and matriculation number on each sheet.

• Please write clearly. Illegible parts are not corrected and rated as incorrect.

• Cross out concept calculations that should not be counted or make them other-
wise identifiable. If several attempts are made to solve a problem, the worst is
scored.

• Please use a document-proof pen with blue or black ink and do not use an ink
killer or similar. Use only the paper provided.

• Please turn off your electronic devices!

I declare that I have completed the exam myself and I am aware that the
exam will be rated as “failed” if attempted to deceive.

. .
(Signature)

Exercise 1 2 3 4 Gesamt
Points 20 20 20 30 90

Scored

Page 2 of 9
(Name/Matriculation number)

Exercise 1:

(a) Let f : N → N and g : N → N be two functions. State the (mathematical) (2 Points)
definition of “f(n) ∈ Ω(g(n))”.

(b) The function T : N→ N satisfies T (n) = n for n ≤ 100 and (4 Points)

T (n) = 64T (n/4) + 5n3

for n ≥ 101. What does the Master theorem tell us about the asymptotic
behavior of T (n)?

(c) Perform an analysis of the Quicksort algorithm. Answer the following ques- (7 Points)
tions:

• Explain the Divide-step in the QuickSort algorithm.

• Explain the Conquer-step in the QuickSort algorithm.

• State (without further argument) the time complexity of the Divide-
step on an array with n integers.

2

Page 3 of 9
(Name/Matriculation number)

(d) Consider a set of n integers, each with b = 1000 bits. Explain how Radix-Sort (7 Points)
with parameter r = 10 sorts these integers. State (without further argu-
ment) the resulting time complexity as a function of n.

3

Page 4 of 9
(Name/Matriculation number)

Exercise 2:

(a) Explain the term open addressing in hashing. (2 Points)

(b) Explain the term linear probing in hashing. (2 Points)

(c) Consider a hash table T [0 . . . 10] with m = 11 entries, and the hash function (10 Points)

h(k, i) = (2k mod 11 + i + 7) mod 11.

Insert the six keys 11, 46, 25, 47, 24, 13 step by step into the initially
empy hash table T . Use open addressing and linear probing with the given
hash function h(k, i).

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

(d) Explain the problem of primary clustering that arises under linear pro- (6 Points)
bing. Describe one approach that helps to avoid primary clustering.

4

Page 5 of 9
(Name/Matriculation number)

Exercise 3:

In the longest common subsequence problem, we are given a sequence X =
〈x1, x2, . . . , xm〉 and a sequence Y = 〈y1, y2, . . . , yn〉. The goal is to find a longest
subsequence that occurs in X as well as in Y . (Recall that a subsequence of X
results from sequence X by deleting an arbitrary subset of terms.)

(a) Explain the dynamic programming algorithm for computing a longest (8 Points)
common subsequence of X and Y .

(b) Perform a time complexity analysis of the dynamic programming algorithm (6 Points)
under (a).

• State the resulting time complexity as a function of m and n.

• State the resulring space complexity as a function of m and n.

5

Page 6 of 9
(Name/Matriculation number)

(c) Construct the dynamic programming table for the sequences Y = BCDABA (6 Points)
and X = ABDBCAB. State a longest common subsequence of X and Y .

6

Page 7 of 9
(Name/Matriculation number)

Exercise 4:

v1

0

v2

7

v3

3

v4

10

v511

v6

∞7

3

5

8

2

2

7

4

1

The figure above shows an intermediate state of the Dijkstra algorithm, starting
at the vertex v1. The red vertices are already visited. The blue numbers next to
the vertices indicate the current distance to v1.

(a) Insert the missing three lines in the following source code snippet: (4 Points)

Initialize-Single-Source(G, s);
S ← ∅;
Q← V [G];
while Q 6= ∅ do

;

;

for each vertex v ∈ Adj[u] do

;

end
end

Algorithm 1: Dijkstra algorithm

(b) Consider the next step of the Dijkstra algorithm in the graph presented (6 Points)
above:

• Which vertex will be selected and handled ?

• State the resulting distances d[v] for all vertices v ∈ V .

(c) Give the shortest path between v1 and v6 at the end of the computation. (2 Points)

7

Page 8 of 9
(Name/Matriculation number)

(d) Explain why the Dijkstra algorithm can not properly handle edges with (4 Points)
negative weight. Give an example that illustrates this problem.

(e) Does the Bellman-Ford algorithm suffer from the same problem with nega- (2 Points)
tive edge weights?

(f) What is the running time of the Dijkstra algorithm in terms of |V | and |E|? (2 Points)

(g) Give the proof idea for the time complexity analysis. (6 Points)

8

Page 9 of 9
(Name/Matriculation number)

v1

v2

v3

v4v5

v6

(h) Draw a Breadth-first search tree, starting at v6. (4 Points)

9

