Exam
 AlGorithms and Data Structures

Name:

First name:
MATRICULATION NUMBER:

Course of studies:

Note:

- You have 90 minutes for the exam.
- Please write your name and matriculation number on each sheet.
- Please write clearly. Illegible parts are not corrected and rated as incorrect.
- Cross out concept calculations that should not be counted or make them otherwise identifiable. If several attempts are made to solve a problem, the worst is scored.
- Please use a document-proof pen with blue or black ink and do not use an ink killer or similar. Use only the paper provided.
- Please turn off your electronic devices!

I declare that I have completed the exam myself and I am aware that the exam will be rated as "failed" if attempted to deceive.

Exercise	1	2	3	4	Gesamt
Points	20	20	20	30	90
Scored					

Exercise 1:

(a) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ be two functions. State the (mathematical) definition of " $f(n) \in \Omega(g(n))$ ".
(b) The function $T: \mathbb{N} \rightarrow \mathbb{N}$ satisfies $T(n)=n$ for $n \leq 100$ and

$$
T(n)=64 T(n / 4)+5 n^{3}
$$

for $n \geq 101$. What does the Master theorem tell us about the asymptotic behavior of $T(n)$?
(c) Perform an analysis of the Quicksort algorithm. Answer the following questions:

- Explain the Divide-step in the QuickSort algorithm.
- Explain the Conquer-step in the QuickSort algorithm.
- State (without further argument) the time complexity of the Dividestep on an array with n integers.
(d) Consider a set of n integers, each with $b=1000$ bits. Explain how Radix-Sort (7 Points) with parameter $r=10$ sorts these integers. State (without further argument) the resulting time complexity as a function of n.

Exercise 2:

(a) Explain the term open addressing in hashing.
(b) Explain the term linear probing in hashing.
(c) Consider a hash table $T[0 \ldots 10]$ with $m=11$ entries, and the hash function

$$
h(k, i)=(2 k \bmod 11+i+7) \bmod 11
$$

Insert the six keys $11,46,25,47,24,13$ step by step into the initially empy hash table T. Use open addressing and linear probing with the given hash function $h(k, i)$.

$\mathbf{T}[0]$	$\mathbf{T}[1]$	$\mathbf{T}[2]$	$\mathbf{T}[3]$	$\mathbf{T}[4]$	$\mathbf{T}[5]$	$\mathbf{T}[6]$	$\mathbf{T}[7]$	$\mathbf{T}[8]$	$\mathbf{T}[9]$	$\mathbf{T}[10]$

(d) Explain the problem of primary clustering that arises under linear probing. Describe one approach that helps to avoid primary clustering.

Exercise 3:

In the longest common subsequence problem, we are given a sequence $X=$ $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and a sequence $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$. The goal is to find a longest subsequence that occurs in X as well as in Y. (Recall that a subsequence of X results from sequence X by deleting an arbitrary subset of terms.)
(a) Explain the dynamic programming algorithm for computing a longest common subsequence of X and Y.
(b) Perform a time complexity analysis of the dynamic programming algorithm under (a).

- State the resulting time complexity as a function of m and n.
- State the resulring space complexity as a function of m and n.
(c) Construct the dynamic programming table for the sequences $Y=B C D A B A$ (6 Points) and $X=A B D B C A B$. State a longest common subsequence of X and Y.

Exercise 4:

The figure above shows an intermediate state of the Dijkstra algorithm, starting at the vertex v_{1}. The red vertices are already visited. The blue numbers next to the vertices indicate the current distance to v_{1}.
(a) Insert the missing three lines in the following source code snippet:

```
Initialize-Single-Source \((G, s)\);
    \(S \leftarrow \emptyset\);
    \(Q \leftarrow V[G] ;\)
    while \(Q \neq \emptyset\) do
    \(\underbrace{}_{\text {end }} \quad ; \quad ;\)
```


Algorithm 1: Dijkstra algorithm

(b) Consider the next step of the Dijkstra algorithm in the graph presented above:

- Which vertex will be selected and handled ?
- State the resulting distances $d[v]$ for all vertices $v \in V$.
(c) Give the shortest path between v_{1} and v_{6} at the end of the computation.
(d) Explain why the Dijkstra algorithm can not properly handle edges with negative weight. Give an example that illustrates this problem.
(e) Does the Bellman-Ford algorithm suffer from the same problem with negative edge weights?
(f) What is the running time of the Dijkstra algorithm in terms of $|V|$ and $|E|$?
(g) Give the proof idea for the time complexity analysis.

(h) Draw a Breadth-first search tree, starting at v_{6}.

